

BUT HOW DO IT KNOW?

The Basic Principles of Computers

For Everyone

By

J. Clark Scott

2

Copyright © 2009 by John Clark Scott

Computer design incorporated herein
Copyright © 2009 by John Clark Scott

All Rights Reserved

Published by John C. Scott, Oldsmar, FL
34677

ISBN 978-0-615-30376-5

buthowdoitknow.com

Cover art, photography and design by Alexander C. Scott
III
artbyalexscott.com

Printed in the United States of America

First Edition : July 2009

10 9 8 7 6 5 4 3 2 1

3

Table of Contents

Table of Contents
Introduction
Just the Facts Ma’am
Speed
Language
Just a Little Bit
What the…?
Simple Variations
Diagrams
Remember When
What Can We Do With A Bit?
A Rose by Any Other Name
Eight Is Enough
Codes
Back to the Byte
The Magic Bus
More Gate Combinations
First Half of the Computer
Numbers
Addresses
The Other Half of the Computer
More Gates
Messing with Bytes
The Left and Right Shifters
The NOTter
The ANDer
The ORer
The Exclusive ORer
The Adder
The Comparator and Zero
Logic
The Arithmetic and Logic Unit
More of the Processor
The Clock
Doing Something Useful
Step by Step
Everything’s Under Control
Doing Something Useful, Revisited
What’s Next?

4

The First Great Invention
Instructions
The Arithmetic or Logic Instruction
The Load and Store Instructions
The Data Instruction
The Second Great Invention
Another Way to Jump
The Third Great Invention
The Clear Flags Instruction
Ta Daa!
A Few More Words on Arithmetic
The Outside World
The Keyboard
The Display Screen
Another Code
The Final Word on Codes
The Disk
Excuse Me Ma’am
That’s All Folks
Hardware and Software
Programs
The Operating System
Languages
The File System
Errors
Computer Diseases?
Firmware
Boots
Digital vs. Analog
I Lied – Sort of
Full Disclosure
Philosophy

5

Introduction
The title of this book is the punch line of an old joke
that goes like this:
Joe is a very nice fellow, but has always been a little
slow. He goes into a store where a salesman is standing
on a soapbox in front of a group of people. The salesman
is pitching the miracle new invention, the Thermos
bottle. He is saying, "It keeps hot food hot, and cold
food cold...." Joe thinks about this a minute, amazed by
this new invention that is able to make a decision about
which of two different things it is supposed to do
depending on what kind of food you put in it. He can’t
contain his curiosity, he is jumping up and down, waving
his arm in the air, saying “but, but, but, but…” Finally
he blurts out his burning question "But how do it know?"
You may or may not have laughed at the joke, but the
point is that Joe looked at what this Thermos bottle
could do, and decided that it must be capable of sensing
something about its contents, and then performing a
heating or cooling operation accordingly. He thought it
must contain a heater and a refrigerator. He had no idea
of the much simpler principle on which it actually
operates, which is that heat always attempts to move
from a hotter area to a cooler area, and all the Thermos
does is to slow down this movement. With cold contents,
the outside heat is slowed on its way in, and with hot
contents, the heat is slowed on its way out. The bottle
doesn't have to "know" in order to fulfill its mission,
and doesn't heat or cool anything. And eventually, the
contents, hot or cold, do end up at room temperature.
But Joe's concept of how the bottle worked was far more
complicated than the truth.
So the reason for the book title, is that when it comes
to computers, people look at them, see what they can do,
and imagine all sorts of things that must be in these
machines. Or they imagine all sorts of principles that
they must be based on, and therefore what they may be
capable of. People may assign human qualities to the
machine. And more than a few find themselves in
situations where they feel that they are embarrassing
themselves, like our friend in the joke, Joe.

6

But computers are actually quite easy to understand. Of
course computers have a greater number of parts than a
Thermos bottle, but each part is extremely simple, and
they all operate on a very simple, very easy to
understand principle.
With the Thermos, the principle is that of the motion of
heat. This is something we can observe in life. We see
ice cubes melting when they are removed from the
freezer, and we see the hot meal cooling off on the
table when the family is late for dinner.
In the computer, the principle on which it operates has
to do with electricity, but that doesn't mean that it is
hard to understand. If you have observed the fact that
when you turn on a light switch, a light bulb lights up,
and when you turn the switch off, the light goes dark,
then you have observed the principle on which computers
operate. That is about all you need to know about
electricity to understand computers.

7

Just the Facts Ma’am
This book is not primarily intended to be a textbook.
There are no problems to do at the end of each chapter.
Its intention is simply to demystify the subject of
computers for anyone who has ever wondered what’s going
on inside of that box. Of course, it also makes a
perfect introduction to computers for a young person who
will ultimately go on to get a PhD in Computer Science.
But it should be easily understandable by housewives,
senior citizens and children who can read well. It
should be understandable to plumbers and street
sweepers. It requires no previous technical education.
It only requires that you can read the language, you can
turn a light bulb on and off, and you can do very simple
addition on the order of 8+5=13.
This book presents the complete essentials that make up
a computer. It presents every piece and part, in the
proper order so that each one will make sense, and can
be understood. Every part is explained fully, and every
new word is defined thoroughly when it is first used.
Any attempt to simplify the subject further would leave
gaps in the big picture where someone would still have
to guess how the parts work together, and you just
wouldn’t ever have that “Aha, I get it!” moment that I
think you’ll soon have.
This book is not a ‘dumbed-down’ version of some college
textbook. It is a complete explanation of the basic
principles of computers. It is a technical book, but so
is a cookbook and so is a driver’s education handbook.
This book just starts at the beginning and defines every
item needed to understand the machine. No matter what
someone already knows about computers, this will fill in
any missing pieces and put them all together into
something that makes sense.
Even our friend, Joe, could understand this book with
diligent study. There are thousands of words and ideas
associated with the field of computers that make the
whole subject seem like a mess. But the basic concepts
underlying them are simple.
In this book, there will not be volumes of trivia about

8

the construction or history of computers, just the
essentials, no more and no less. Each part of the
computer has a simple function, and when they are
connected together, you end up with a useful machine
called a computer.
There is nothing to memorize in this book. Each chapter
is designed to give you a new idea that you didn’t have
before, or if it is something that you had heard about
previously, it always seemed confusing. Each idea is
very simple, and one thing leads to the next. Each
chapter presents an idea. Each idea is simple and easy
to understand. Later chapters present ideas that build
on the ideas from previous chapters.
If someone were to write a book about how to build a
house, there could be various levels of detail. The
simplest book would say, “lay a foundation, put up the
walls, cover with a roof, put in plumbing and
electrical, and you’re done.” That would not be enough
detail for someone who didn’t already have some
experience using a hammer and saw and installing a
faucet and wiring a light switch.
At the other end of the spectrum would be a book that
had separate chapters for every possible type of
foundation, the different kinds of dirt you might have
to dig in, formulas for a dozen different kinds
concrete, charts of weather conditions that are optimum
for laying foundations, etc. That would be far too much
information. There would be so many details, that what
was really important would get lost.
This book attempts to give just enough detail to see
what every computer has in common and how they work, not
how to build the biggest or best computer ever made. It
is not about any specific brand of computer. It is not
about how to use a computer. If it were a book about
building a house, it would probably describe a simple
plan for a sturdy garden shed with a sink and one bare
light bulb, showing the size and shape of every piece of
wood, where to put all the nails, how to hang the door
and how to put the water pipes together so they wouldn’t
leak. It would not show how to build anything as
complicated as a fancy curved oak staircase.
We are going to show the one simple part that computers

9

are made of, and then connect a bunch of them together
until we have built a complete computer. It is going to
be a lot simpler than you ever imagined.

10

Speed
Computers seem mysterious and magical. How can they do
what they do? They play games, they draw pictures, they
'know' your credit rating. These machines are capable
of doing all sorts of strange and wondrous things. Yet
they are simple. They can do only a very few, very
simple things. And, they can only do one of these simple
things at a time. They appear to be doing complex
things, only because they do a huge number of simple
things one after another in a small amount of time. The
result, as in a video game, is very complex in
appearance, but in reality, is very simple, just very
very fast.
Computers are designed to do a small number of specific
simple things, and to do these things quickly, one after
the other. Which simple things are done, and in what
order, determines what sort of task the computer
accomplishes in any given time, but anything the
computer does consists of nothing outside of its limited
capabilities.
Once you see what a computer is made up of, you will
come to realize how it is that they can do what they do,
exactly what sorts of things they are capable of, and
also, what they are not capable of.
So the secret of computers is not that they are complex,
rather it is their speed. Let’s look at exactly how fast
their speed is.
Since computers work on electricity, their speed is
related to the speed of electricity. You may remember
hearing that the speed of light is 186,000 miles per
second. That’s pretty darned fast. Light can go around
the entire earth seven times in one second, or from the
Earth to the Moon in about a second and a half. Per the
physicists, electricity has many properties in common
with light, and its speed, when traveling in a wire,
gets slowed down to about half the speed of light. But
still, going all the way around the Earth three and a
half times in one second is extremely fast.
As a point of comparison, imagine it is a hot day and
you have an electric fan sitting on the table blowing

11

cool air on you. The fan is spinning around so fast that
the blades are a blur, but it is only spinning around
about 40 times each second. A point on the edge of one
of those blades will only travel about 150 feet in that
second, it will take 35 seconds for that point to travel
just one mile.
Since the fan blades are already a blur, it may be hard
to imagine them going just ten times faster. If it did,
that fan would be putting out quite a breeze. And if you
could make it go a hundred times faster, it would almost
certainly self-destruct, with fan blades breaking off
and getting stuck in the ceiling. But electricity
traveling in the same circle would go around about a
hundred million times in one second, that’s two and a
half million times faster than the fan blades. That’s
fast.
A million is a very large number. If you took a big
sheet of paper that was 40 inches square and took a
ruler and placed it at the top edge, and drew 25 dots
per inch along the top edge of the paper, you would have
to draw one thousand dots to get across that sheet of
paper. If you then moved the ruler down the page 1/25th
of an inch, and drew another thousand dots, and kept
doing that, you would have to move the ruler down the
page one thousand times, each time drawing one thousand
dots. If you could complete such a boring task, you
would end up with a piece of paper with a million dots
on it. That’s a lot of dots or a lot of anything. And
just to finish the thought, if you could find a thousand
people who would each draw one of these million dot
sheets, and stacked up those thousand sheets in a pile,
you would then have a billion dots.
Now let’s say that the electricity moving around inside
the computer can accomplish some simple task by
traveling one foot. That means that the computer could
do 500 million simple things in one second. Again for
comparison, the fan on the table will spin for 7 hours
to go around just one million times and it will take a
full six months for it to spin around 500 million times.
When you talk about the speed that electricity can move
between parts inside the computer, some of the parts you
can see are a foot apart, some are closer, an inch, a

12

tenth of an inch. And inside these parts are a multitude
more parts that are very close to each other, some just
thousandths of an inch apart. And the shorter the
distance the electricity has to travel, the sooner it
gets there.
There is no point in saying how many things today’s
computers do in a single second, because that would date
this book. Computer manufacturers continue to produce
new computers that go twice as fast as the fastest
computers of only two or three years past. There is a
theoretical limit to how fast they can go, but engineers
keep finding practical ways to get around the theories
and make machines that go faster and faster.
During all of this time that computers have been getting
faster, smaller and cheaper, the things that computers
do, really have not changed since they were first
invented in the 1940's. They still do the same few
simple things, just faster, cheaper, more reliably and
in a smaller package.
There are only a few sections to a computer, and they
are all made out of the same kinds of parts. Each
section has a specific mission, and the combination of
these parts into a machine was a truly marvelous
invention. But it is not difficult to understand.

13

Language
In this book, we are going to need to define some words
that are used to describe the parts inside a computer.
In some professions, notably the Medical and Legal,
there is a tendency to make up a lot of new words, and
to take them from the ancient Greek and Latin languages,
and to make them long and hard to pronounce.
In the world of computers, it seems that the pioneer
inventors were a less formal sort of people. Most of the
words they used are simple words from everyday language,
words that already existed, but are used in a new way.
Some of the new words are words we already know, used as
a different part of speech, like an existing noun now
used as a verb. Some of the words are acronyms, the
first letters from the words of a phrase.
Each word will be described thoroughly when it is first
used. And although there are thousands of words and
acronyms in use if you consider the entire computer
industry, there are only about a dozen or two words
needed to understand the computer itself. You have
probably heard some of these words before, and figured
out what they meant from how they were used, but now you
will get the proper and full definitions. In many cases
you may find that they are simpler than you thought.

14

Just a Little Bit
What is in a computer? It shows you still pictures,
moving pictures, music, your checkbook, letters you have
written, it plays video games, communicates all around
the world, and much much more. But are there pictures
inside the computer? If you got out a microscope and
knew where to look, could you find little pictures
somewhere inside the computer? Would you see “A”s and
“B”s and “8”s and “12”s moving around in there
somewhere?
The answer is no, there are no pictures, numbers or
letters in a computer. There is only one kind of thing
in a computer. There are a large number of this kind of
thing, but there is only one kind of thing in there. It
is called a bit.
When you flip a coin up in the air, and let it fall on
the ground, it will end up on the floor in one of two
possible states - with either the head showing, or the
tail.
The light in your living room (assuming you have a
switch and not a dimmer) can be either on or off.
The lock on your front door can be either locked or
unlocked.
What do all of these things have in common? They are all
places that contain a thing that can be in one of two
possible states. This is the definition of a bit.
A bit is some kind of a physical object that has a size
and a location in space, and it has some quality about
itself, that at any given time can be in one of two
possible states, and may be made to change back and
forth between those two states.
A lump of clay is not a bit. It can be molded into a
ball, a cube, a pancake, a ring, a log, a face or
anything else you can think of. It has a size and a
location in space, but there are too many states that it
can be in for it to be called a bit. If you took that
lump of clay, flattened it out, scratched “yes” on one
side of it, and “no” on the other side, and then put it
in a kiln and fired it until it was hard, then you might

15

be able to call it a bit. It could sit on a table with
either the “yes” or “no” showing. Then it would only
have two states.
You have probably heard of bits before in relation to
computers, and now you know what they are. In a
computer, the bits are not like the coin or the lock,
they are most like the light. That is, the bits in a
computer are places that either have electricity or they
do not. In a computer, the bits are very, very small and
there are a very large number of bits, but that’s all
that is in there.
Like the light in the living room, the bit is either on
or off. In the living room, there is electricity in the
wall coming into the switch. When you turn the switch
on, the electricity goes from the switch, through the
wires in the wall and ceiling, into the light socket and
then into the light bulb. So this bit in the living room
is several feet long, it includes the switch, the wires,
the socket and the light bulb. In a computer, bits are
mostly tiny, actually microscopic. Also, the computer
bit doesn’t have a mechanical switch at one end or a
light bulb at the other. If you removed the light bulb
from the socket in the living room, the switch would
still send electricity to the socket when it was on, and
it would still be a bit – you just wouldn’t be able to
see whether it was on or off by looking at a light bulb.
Your computer has something resembling switches, like
the keys on the keyboard, and something resembling light
bulbs, like the tiny dots on the screen, but most of the
bits are inside and unseen.
This is basically all there is in a computer – bits.
There are lots and lots of them, and they are arranged
and connected up in various ways, which we will examine
in detail as the book progresses, but this is what is
inside all computers – bits. A bit is always in one of
its two possible states, either off or on, and they
change between on and off when they are told to do so.
Computer bits aren’t like the coin that has to
physically flip over to change from one state to the
other. Bits don’t change shape or location, they don’t
look any different, they don’t move or rotate or get
bigger or smaller. A computer bit is just a place, if
there is no electricity in that place, then the bit is

16

off. When electricity is present, then the bit is on.
If you want to change a coin from showing heads to
showing tails, you have to physically move it to flip it
over, which takes some amount of time. Because the only
thing that has to move in a computer bit is the
electricity, changing it’s state from off to on, or on
to off can happen much more quickly than anything that
has to be moved physically.
As another example, remember the wild American west from
the movies? There were little towns separated by vast
distances. The bigger towns would have a telegraph
office. In this office was a guy wearing a funny hat who
had a spring-loaded switch called a key, and he would
send messages by pressing this key on and off in certain
patterns that represented the letters of the alphabet.
That key was connected to a battery (yes they had
batteries back then) and a wire that was strung along
poles until it got to another town. The key simply
connected the battery to the wire when it was pressed,
and disconnected the battery when the key was not
pressed. In the other town there was another telegraph
office, the wire came into that office, the end of it
was wrapped around an iron rod (which turns into a
magnet when there is electricity in the wire,) the
magnetized rod attracted a little bar of iron held
nearby with a spring, and made a clicking sound every
time the electricity came on. The guy in the office
listened to the pattern of the clicking and wrote down
the letters of the message. They might have used a light
bulb instead of the clicker, except that light bulbs had
not yet been invented.
The point of bringing up this subject, is that this
whole telegraph machine, from the key that gets pressed
in one town, through the long wire that travels to
another town many miles away, to the clicker, this whole
apparatus comprises just one single bit. It is a place
that can either have or not have electricity, and goes
on and off as it is told. And this method of
communication revolutionized the world in many ways. But
this very important invention of the 1840s consisted of
nothing more than one bit.
So I hope this begins to simplify the subject of

17

computers for you. There is only one thing inside
computers, bits. Lots of them to be sure, but when you
understand bits, you understand what’s in there.

18

What the…?
Imagine it is a bright sunny day, and you walk into a
room with lots of open windows. You notice that the
ceiling light is on. You decide that this is a waste,
and you are going to turn the light off. You look at the
wall next to the door and see a switch plate with two
switches. So you assume that the one closer to the door
is for the ceiling light. But then you notice that the
switch is already off. And the other switch is off too.
So then you think “well, maybe someone installed the
switch upside down,” so you decide to flip the switch
anyway. You flip it on and off but nothing happens, the
ceiling light stays lit. So then you decide that it must
be the other switch, and you flip it on, off, on, off.
Again nothing happens, that ceiling light continues to
shine at you. You look around, there is no other door,
there are no other switches, no apparent way to turn off
this darned light. It just has to be one of these two
switches, who built this crazy house anyway? So you grab
one switch with each hand and start flipping them
wildly. Then suddenly you notice the ceiling light
flicker off briefly. So you slow down your switch
flipping and stop when the ceiling light is off. Both
switches say “on”, and the light is now off. You turn
one switch off, then on, and the light goes on, then
back off. This is backwards. One switch off equals light
on? So then you turn the other switch off, then on, the
same thing, the light goes on, then back off. What the
heck? Anyway, you finally figure out how it works. If
both switches are on, the light goes off. If one or the
other or both switches are off, then the ceiling light
is on. Kind of goofy, but you accomplish what you
intended, you turn both switches on, the light goes off,
and you get the heck out of this crazy room.
Now what is the purpose of this little story about the
odd light switches? The answer is, that in this chapter
we are going to present the most basic part that
computers are made of. This part works exactly like the
lighting system in that strange room.
This computer part is a simple device that has three
connections where there may or may not be some

19

electricity. Two of those connections are places where
electricity may be put into the device, and the third
connection is a place where electricity may come out of
the device.
Of the three connections, two of them are called
“inputs,” because electricity can be sent to them from
somewhere else. The third connection is called the
“output” because electricity can come out of it and then
be sent somewhere else.
This computer part is a device that does something with
bits. If you have two bits, and you connect those two
bits to the inputs, this device “looks” at those two
bits, and “decides” whether to turn the one output bit
on or off.
The way it “decides” is very simple, and is always the
same. If both inputs are on, the output will be off. If
one or both of the inputs are off, then the output will
be on. That’s just the way that the room with the odd
light switches worked.
Remember that there is nothing but bits inside the
computer. This simple device is where bits come from and
where they go to. The “decision” that this device makes
is how bits come to be turned on and off in a computer.
Two bits go into the device, and one bit comes out. Two
bits come from somewhere else, are examined by the
device, and a new third bit is generated so that it may
go somewhere else.
If you have been extra observant, you may have asked
yourself this question: “when both inputs are off, the
output is on, so…. how do you get electricity at the
output if both inputs are off?” Well, that is an
excellent question, and the excellent answer is that
every one of these devices is also connected to power.
Like every appliance or table lamp in your house, where
each has a plug with two pins, this device has a pair of
wires, one of which is connected to a place where the
electricity is always on, and the other is connected to
a place where the electricity is always off. This is
where the electricity for the output comes from. When
someone builds a computer, they have to make all of
those power connections to each one of those parts in
order to have it work, but when we are drawing diagrams

20

of parts, how they are connected, and what they will do,
we won’t bother drawing the power wires – they would
just clutter up the drawing. It is understood that each
part has its power connection, and we don’t worry about
it. Just understand that it is there, and we won’t
mention it any more for the rest of the book. I wouldn’t
have even mentioned it here except that I figured that
you’d probably ask yourself that question sooner or
later.
Now I know I said that you don’t have to understand much
about electricity to understand computers. Here is as
complicated as it gets. There are actually a half dozen
electronic parts inside of this device that make it
work, but we are not going to examine those parts in
this book. Someone who has an electronics background
could look at what’s in there, and in about 30 seconds
would say “Oh yeah, if both inputs are on, the output
will be off, and for any other combination the output
will be on, just like the book says.” And then that
person could go ahead and read this book without ever
having to think about what’s in there again. Someone who
doesn’t know electronics misses out on those few seconds
of understanding, but this book is the same for
everyone.
In normal house wiring, one switch turns one light on
and off. In the computer, it takes two switches, and
it’s sort of backwards in that they both have to be on
to turn the light off. But if you accept the fact that
something could be made that operates this way, you can
then understand how everything in the computer works.
This type of computer part is in fact the ONLY type of
part required to build a computer. Of course it takes a
lot of them to build a complete computer, but with
enough of them, you can make any type of computer. So
there you go again, see how simple a computer is? It is
just full of this little type of thing – a lot of them
to be sure, but this is all there is.
Now we need to give this device a name, this thing
inside the computer that bits are made of, it is called
a “gate.” I can’t find a good reason why it is called a
gate, a gate in a fence lets people through when it is
open, and stops people when it is closed. A computer

21

gate generates a third bit from two other bits, it
doesn’t open and close or stop or let anything through.
The meaning of this computer term “gate” doesn’t seem to
fit into the common meaning of the word, but sorry, I
didn’t make up the name, that’s just what it is called.
You’ll get used to it. At least it isn’t some long word
from the ancient Greek.
In the next few chapters, we are going to show how we
can do something useful by connecting several gates
together. We will use drawings like the following. The
‘D’ shape with the little circle at its tip represents
the device we have described, and the lines represent
the wires going in and coming out of it that get
attached to other parts of the computer. The picture on
the left shows a gate complete with its power wires, but
as promised, we won’t be concerned with them for the
rest of this book. The drawing on the right shows
everything we need:

This is a representation of a gate. The two wires on the
left (a and b) are the inputs, and the wire on the right
(c) is the output. All three wires are bits, which means
that they are either on or off. Each input bit comes
from somewhere else in the computer and is either on or
off depending on what is happening where it came from,
and then this gate sets its output on or off depending
on the states of its two inputs.
Sometimes it is useful to make a little chart that shows
how the various input combinations create the output,
like this:

a b c

22

Off Off On

Off On On

On Off On

On On Off

Each line shows one possible combination of the inputs,
and what the output will be under those circumstances.
Compare this little chart with the experience with the
odd room with the two light switches. If one switch is
called ‘a,’ the other switch is called ‘b,’ and the
ceiling light is called ‘c,’ then this little chart
describes completely and exactly how the equipment in
that room operates. The only way to get that light off
is to have both switch ‘a’ and switch ‘b’ on.

23

Simple Variations
As mentioned, this gate is the only thing you need to
build a computer, but you need a lot of them, and they
have to be wired together in an intelligent manner in
order to be able to make them do something useful. What
we are going to do here is to show two simple things
that are done many times inside any computer.
This first one is very simple. Take the gate above, and
take the two input wires, ‘a’ and ‘b,’ and tie them
together. Thus ‘a’ and ‘b’ will always be the same. They
can still be changed on and off, but ‘a’ and ‘b’ can
never be different. ‘A’ and ‘b’ can either both be on,
or both be off. Thus the chart of this combination only
has two lines on it, two possibilities:

a b c

Off Off On

On On Off

Actually, since columns ‘a’ and ‘b’ are the same, there
is really only one input and it can be drawn simply like
this with a triangle instead of the ‘D’ shape. Its chart
is also very simple:

24

a c

Off On

On Off

For our second variation, lets combine one of our
original type of gate with the new gate that we just
invented, like this:

And we’ll combine the charts of how they work. The ‘a,’
‘b’ and ‘x’ are like the first gate, the ‘x’ and ‘c’ are
like the second gate.

a b x c

Off Off On Off

Off On On Off

On Off On Off

On On Off On

This combination is used so often inside computers, that
it is built as a single unit, and the ‘x’ bit is not
available to connect to. So to make it simpler to
understand, it is drawn as a single unit like this:

25

The only difference between this picture and the picture
of our original gate is that the little circle after the
big ‘D’ is missing.
Since ‘x’ is not used, the chart can also be simplified,
and it looks like this:

a b c

Off Off Off

Off On Off

On Off Off

On On On

The only difference between this chart and the chart of
our original gate is that every item in column ‘c’ is
the opposite of what it was in the original chart.
Imagine that this combination of gates was installed in
that room with the two light switches and the ceiling
light. The only way the light could be on is if both
switches were on. So if you walked in there and saw the
light on, and then looked at the switches, you would see
that they were both on. No matter which switch you
decided was for the light, and you switched it off, the
light would go off. You might not notice that if you
turned both off, and then wanted to turn the light back
on, you wouldn’t be able to do it by just flipping one
switch. You would have to go through the same
experiment, flipping both switches until the light came
on, and you would find that one switch and the other
switch would have to be on to get the light to light.

26

This combination gate could be described this way: For
the output to be on, one input AND the other input must
both be on. Thus this type of gate has a name, and in
the tradition of the informal terminology invented by
computer people, because it reminds us of what the word
AND means, it is simply called an “AND gate.”
Now to fill in a few details purposely left out above,
the original gate we looked at works like the AND gate
except the output is the opposite, or the negative of
the AND gate. Thus it is called a Negative AND gate, or
just a “NAND gate” for short.
The simple gate that had both inputs tied together also
has its own name. The output is always the opposite of
the one input, that is, if the input is on, the output
is not on (off.) If the input is off, the output is not
off (on.) The output is always NOT what the input is,
thus, it is called a “NOT gate.”
Notice the difference between the diagrams of the AND
gate and the NAND gate. They are the same except that
there is a little circle at the beginning of the output
of the NAND gate. The thing that looks like a large
letter ‘D’ means to do the ‘AND’ function, which means
to take action only if both inputs are on, and the
little circle means switch to the opposite. So an AND
gate is on if both inputs are on, a NAND gate is off if
both inputs are on. The NOT gate starts with a triangle,
which just means take the input and turn it into an
output. The circle then means to switch to the opposite.
The AND gate is used a lot in computers, and it is
probably the easiest to understand, but we looked at the
NAND gate first for two reasons. The first and less
important reason is that the NAND gate is the easiest
gate to build. When you have to build a large number of
gates, it will be cheaper and more reliable if you can
use the type of gate that is easiest to build.
The second, and very important reason that we looked at
the NAND gate first is this: That everything in a
computer that makes it a computer, can be made out of
one or more NAND gates. We have already seen that the
NOT gate and the AND gate can be made out of NAND gates,
and we will see a few more interesting combinations as
we go along. But every one of them is based on this

27

silly little thing called a NAND gate.
The problem in this chapter has been that the NAND gate
is the basic building block of computers, but the AND
gate is the first gate that has a name that makes sense.
So we looked first at the NAND gate and the NOT gate
without giving them names. Then we built an AND gate,
gave it its name, and went back and named the first two.
As a note on the language here, the word ‘and’ is a
conjunction in regular English. It connects two things,
as in “I like peas and carrots.” In computers, we use
the word in two new ways. First, it is an adjective, a
word that modifies a noun. When we say “this is an AND
gate,” the word “gate” is a noun, and the word “AND”
tells us what kind of a gate it is. This is how “AND”
has been used in this chapter. “AND” will also be used
as a verb, as in “let us AND these two bits.” We will
see AND used in this way later in the book.
So back to the simplicity theme of this book, we have
said that there is only one thing in computers, bits.
And now we see that bits are constructed using gates,
and all gates come down to the NAND gate. So all you
have to know to understand computers is this very simple
device, the NAND gate. No kidding! Can you understand
this thing? Then you can understand the whole computer.

28

Diagrams
If you want to see how a mechanical machine works, the
best way to do it is to look inside of it, watch the
parts move as it operates, disassemble it, etc. The
second best way is to study it from a book that has a
lot of pictures showing the parts and how they interact.
A computer is also a machine, but the only thing that
moves inside of it is the invisible and silent
electricity. It is very boring to watch the inside of a
computer, it doesn’t look like anything is happening at
all.
The actual construction of the individual parts of a
computer is a very interesting subject, but we are not
going to cover it any further than to say the following:
The technique starts with a thin crystal wafer, and in a
series of steps, it is subjected to various chemicals,
photographic processes, heat and vaporized metal. The
result is something called a ‘chip,’ which has millions
of electronic parts constructed on its surface. The
process includes connecting the parts into gates, and
connecting the gates into complete computer sections.
The chip is then encased in a piece of plastic that has
pins coming out of it. Several of these are plugged into
a board, and there you have a computer. The computer we
are going to ‘build’ in this book could easily fit on
one chip less than a quarter of an inch square.
But the point is, that unlike a mechanical machine, the
actual structure of a chip is very cluttered and hard to
follow, and you can’t see the electricity anyway. The
diagrams we saw in the previous chapter are the best way
to show how a computer works, so we’d better get pretty
good at reading them.
Throughout the rest of this book, we are going to build
new parts by connecting several gates together. We will
describe what the new part does, and then give it a name
and its own symbol. Then we may connect several of those
new parts into something else that also gets a name and
a symbol. Before you know it, we will have assembled a
complete computer.
Every time there is a new diagram, the text will explain

29

what its purpose is, and how the parts achieve it, but
the reader really must look the diagram over until it
can be seen that the gates actually do what the book
says they will do. If this is done faithfully with each
one, you will very shortly see exactly how a computer
works.
There are only two things in our drawings, there are
parts that have inputs and outputs, and there are lines,
or wires, that connect outputs and inputs together.
When electricity comes out of the output of a gate, the
electricity travels through the whole wire as fast as it
can go. If the output of a gate is on, then the
electricity is on in the wire that is connected to it,
for as far as it goes. If the output of a gate is off,
the whole wire is off. I guess you could consider that
the bit that comes out of the gate includes the whole
wire as well.
The inputs of gates do not use up the electricity in the
wire, so one output may be connected to the input of one
or many gates.
When wires are connected together, this is shown by a
dot where they meet on the diagram, and all wires that
are connected together get electricity as if they were
one wire. When wires cross on a diagram without a dot,
it means that there is no connection between them, they
are not touching, the two bits are separate.
Whenever there is a choice, the diagrams will show the
path of the electricity moving from left to right, or
from the top of the page towards the bottom. However,
there will be many exceptions to this, especially later
on in the book. But you can always tell which way the
electricity is moving in a wire by starting at an output
and following it to an input.
Most of the diagrams in the book are very easy to
follow. In a few cases, there will also be one of those
charts that shows what the output will be for every
possible combination of inputs. If you have trouble
following a diagram, you can pencil in the ons and offs
right on the page, or place coins on the page and flip
them so that heads means on and tails means off.
Unfortunately, the diagram in the next chapter is

30

probably the hardest one to follow in the whole book,
but once you master it, you’ll be an expert diagram
reader.

31

Remember When
You have probably heard of computer memory, and now we
are going to see exactly what that is. Since the only
thing inside of computers is bits, and the only thing
that happens to bits is that they either turn on or turn
off, then it follows that the only thing a computer can
‘remember’ is whether a bit was on or off. We will now
see how that is accomplished.
The following diagram shows one bit of computer memory.
It happens to be one of the neatest tricks you can do
with a few gates. We will examine how it works here at
great length, and after we understand it, we will
replace it with its own symbol, and use it as a building
block for bigger and better things.
It is made of only four NAND gates, but its wiring is
kind of special. Here it is:

This combination as a whole has two inputs and one
output. ‘I’ is where we input the bit that we want to
remember, and ‘o’ is the output of the remembered bit.
‘S’ is an input that tells these gates when to ‘set’ the
memory. There are also three internal wires labeled ‘a’,
‘b’ and ‘c’ that we will have to look at to see how
these parts work together. Try to follow this carefully,
once you see that it works, you will understand one of
the most important and most commonly used things in a
computer.
To see how this works, start with ‘s’ on and ‘i’ off.
Since ‘i’ and ‘s’ go into gate 1, one input is off, so
‘a’ will be on. Since ‘a’ and ‘s’ go to gate 2, both

32

inputs are on, and therefore ‘b’ will be off. Looking at
gate 4, since ‘b’ is off, the output of gate 4, ‘c’ will
be on. Since ‘c’ and ‘a’ are both on, the output of gate
3, ‘o’ will be off. ‘O’ goes back down to gate 4
providing a second off input, leaving ‘c’ still on. The
important thing to note here is that with ‘s’ on, ‘o’
ends up the same as ‘i.’
Now with ‘s’ still on, lets change ‘i’ to on. Since ‘i’
and ‘s’ go into gate 1, ‘a’ will be off. ‘A’ goes to one
side of both gate 2 and gate 3, therefore their outputs
‘o’ and ‘b’ must both be on. ‘O’ and ‘b’ both on go into
gate 4 and turn ‘c’ off, which goes back up to gate 3
providing it with a second off input, leaving ‘o’ still
on. The important thing to note here is the same thing
we noted in the previous paragraph - that with ‘s’ on,
‘o’ ends up the same as ‘i.’
So far, we have seen that when ‘s’ is on, you can change
‘i’ on and off, and ‘o’ will change with it. ‘O’ will go
on and off just the same as ‘i.’ With ‘s’ on, this
combination is no more useful than a wire connecting ‘i’
to ‘o.’
Now let’s see what happens when we turn ‘s’ off. Look at
gate 1. When ‘s’ is off, ‘a’ will be on no matter what
you do to ‘i.’ Now you can switch ‘i’ on and off and
nothing will happen. The same goes for gate 2. ‘A’ may
be on, but ‘s’ is off, so ‘b’ can only be on. Both ‘a’
and ‘b’ are on, and changing ‘i’ does nothing. Now the
only thing left that matters, the big question is, what
will ‘o’ be?
If ‘i’ and ‘o’ were on before ‘s’ got turned off, gate 3
had both inputs off, and gate 4 had both inputs on. When
‘s’ goes off, ‘a’ comes on, which is one input to gate
3. But the other input is off, so nothing changes, ‘o’
stays on.
If ‘i’ and ‘o’ were off before ‘s’ got turned off, gate
3 had both inputs on, and gate 4 had both inputs off.
When ‘s’ goes off, ‘b’ comes on, which is one input to
gate 4. But the other input is off, so nothing changes,
‘c’ stays on and ‘o’ stays off.
So the answer to the question of what happens to ‘o’
when ‘s’ is turned off, is that it stays the way it was,
and it is no longer affected by ‘i.’

33

Now what do we have here? With ‘s’ on, ‘o’ does whatever
‘i’ does. With ‘s’ off, ‘o’ stays the way it and ‘i’
were, at the last instant just before ‘s’ went off. Now
‘i’ can change, but ‘o’ stays the way it was. This
combination of gates locks in the way ‘i’ was at an
earlier time. This is how a combination of four NAND
gates can “remember.” This is only one bit of memory,
but this is the basic building block of all computer
memory. All that computer memory is, is a way of
preserving the way a bit was set at some point in time.
I hope you followed the wires and the ons and offs in
this chapter. Once you see exactly how this thing works,
you will know that these simple NAND gates can create a
memory bit, and I assure you that you will never wonder
about it again.
Now that we know how this thing works, we no longer need
to look at that tricky internal wiring of this
combination. We have seen how it works, and from now on,
we will just use this diagram to represent it:

‘I’ is the input bit that you want to save. ‘S’ is the
input that allows ‘i’ into the memory bit when ‘s’ is
on, and locks it in place or ‘sets’ it when ‘s’ goes
off. ‘O’ is the output of the current or saved data. ‘M’
stands for Memory. Pretty simple, eh?
Let’s go back to our room with the funny light switches.
It had a NAND gate hooked up in it. Let’s take the NAND
gate out and replace it with this new memory bit. We’ll
connect the left switch to the ‘i’ wire, the right
switch to the ‘s’ wire, and the ceiling light to the ‘o’
wire. We could start out with everything looking the
same, that is, the light is on, but both switches are
off. That would mean that at some point in the past,
both ‘i’ and ‘s’ were on, and ‘s’ got turned off first,
locking the then state of ‘i’ into our memory bit, which
then comes out at ‘o.’ Then ‘i’ could have been switched
off without affecting anything. So if we walked in and
decided that we wanted to turn the light off, we would
first try the ‘i’ switch, turn it on and off, and

34

nothing would happen. Then we would try the ‘s’ switch.
When we turn it on, the light would go off. Aha we say,
the ‘s’ switch controls the light, but it is installed
up-side-down! So then we turn the ‘s’ switch back off,
expecting the light to come back on, but the light
remains off. Now the switches are in the same position
as they were when we entered the room, they’re both off,
but now the light is off as well, boy is this confusing.
Now I don’t want to speculate on how much cursing would
go on before someone figured this out, but in the end
they would find that when ‘s’ was on, the light went on
and off with ‘i,’ and when ‘s’ was off, the light would
stay the way it was just before ‘s’ got turned off.

35

What Can We Do With A Bit?
Now we have described a bit, we have shown how to build
one, how to remember over time what state a bit was in
at an earlier instant in time, now what? What do we do
with it?
Since a bit is actually nothing more than the
electricity being on or off, the only actual, real thing
we can do with a bit is to turn lights on or off, or
toasters or whatever.
But we can also use a bit to represent something else in
our lives. We can take a bit, and connect it to a red
light, and say that when this bit is on, it means stop,
and when this bit is off, you may go. Or if a particular
bit is on, you want fries with your burger; if it is
off, you want the burger only.
This is the action of using a code. What is a code? A
code is something that tells you what something else
means. When something is supposed to mean something,
somewhere someone has to make a list of all of the
states of the ‘thing,’ and the meanings associated with
each of those states. When it comes to a bit, since it
only can be in two different states, then a bit can only
mean one of two things. A code for a bit would only need
two meanings, and one of those meanings would be
associated with the bit being off, and the other meaning
would be associated with the bit being on.
This is how you assign meaning to a bit. The bit does
not contain any meaning in and of itself; there is no
room in a bit for anything other than the presence or
absence of electricity. Meaning is assigned to a bit by
something external to the bit. There is nothing about
traffic or French fries in a bit, we are just saying
that for this bit in this place, connected to a red
light hanging over an intersection, when it is on, you
must stop, when it is off, you may go. Another bit, in a
cash register in a fast food restaurant, means put fries
in the bag when the bit is on, or no fries when it is
off.
These are two cases of someone inventing a simple two-
item code. In one case, the code is: bit on means fries,

36

bit off means no fries, in the other case, bit off means
go, bit on means stop. These two bits are the same, they
are just used for different purposes, and someone
decides what the meaning of these two bits will be. The
code is written down somewhere in the law books, or in
the restaurant manager’s handbook, but the code is not
in the bit. The state of the bit merely tells someone
which line of the code they are supposed to believe is
true at the current moment. That’s what a code is.
Like the spies who pass messages by using a secret code,
the message may be seen by other people, but those other
people don’t have the code, so they don’t know what the
message means. Maybe one spy has a flowerpot sitting on
the sill in the front window of his apartment. When the
pot is on the left side of the sill, it means “Meet me
at the train station at 1:30.” And when the flowerpot is
on the right side of the sill, it means “No meeting
today.” Every day, the other spy walks down the street
and glances up at that window to see whether he needs to
go to the train station today. Everyone else who walks
down that street can just as easily see this message,
but they don’t have the code, so it means nothing to
them. Then when the two spies do meet, they can pass a
piece of paper that is written in another secret code.
They encode and decode the message using a codebook that
they do not carry when they meet. So if their message is
intercepted by anyone else, it won’t mean anything to
that someone else. Someone who doesn’t have the codebook
won’t have the proper meanings for the symbols on the
sheet of paper.
A computer bit is still, and will always be, nothing
more than a place where there is or is not electricity,
but when we, as a society of human beings, use a bit for
a certain purpose, we give meaning to the bit. When we
connect a bit to a red light and hang it over an
intersection, and make people study driver’s handbooks
before giving them driver’s licenses, we have given
meaning to that bit. Red means ‘stop,’ not because the
bit is capable of doing anything to a vehicle traveling
on the road, but because we as people agree that red
means stop, and we, seeing that bit on, will stop our
car in order to avoid being hit by a car traveling on
the cross street, and we hope that everyone else will do

37

the same so that we may be assured that no one will hit
us when it is our turn to cross the intersection.
So there are many things that can be done with a bit. It
can indicate true or false, go or stop. A single yes or
no can be a major thing, as in the answer to “Will you
marry me?” or an everyday matter such as “Would you like
fries with that?”
But still, there are many things that cannot be done
with a bit, or seem to be incompatible with the idea of
bits altogether. There can be many examples of yes/no
things in everyday life, but there are many more things
that are not a simple yes or no.
In the case of the telegraph, which was indisputably
just one bit, how can there be more than two items in
the Morse code? The answer is that the ability to send
and receive messages depended on the skills and the
memories of the operators at both ends of the wire. In
the Morse Code, if the key was pressed for a very short
time, that was called a “dot(.),” and if it was pressed
for a slightly longer time, that was called a “dash(-).”
Each letter of the alphabet was assigned a unique
combination of dots and or dashes, and both operators
studied the code, memorized it and practiced using it.
For instance, the code for the letter ‘N’ was dash dot
(-.) and the code for the letter ‘C’ was dash dot dash
dot (-.-.). The length of the on times were different to
make dots and dashes, and the lengths of the off times
were different to distinguish between the time that
separates dots and dashes within a letter, the time that
separates letters, and the time that separates words.
You need a longer off time to keep from confusing a ‘C’
with two ‘N’s. The receiving person had to recognize
these as patterns – that is, he had to hear and remember
the lengths of several on and off times until he
recognized a letter. The telegraph apparatus didn’t have
any memory at all, there was never even one whole letter
on the wire at any one time, the pieces of letters went
down the wire, to be assembled into dots and dashes in
the mind of the operator, then into letters, and then
into words and sentences written on a sheet of paper. So
the telegraph bit achieves more than two meanings by
having several individual times when there may be ons or
offs.

38

If a computer were built on the principles of the Morse
code, it would just have a light bulb on top of it
flashing the code at us. Since we’d rather see whole
letters, words and sentences on the screen
simultaneously, we need something more than a single bit
and this old code.
Even in the examples used in this chapter, real traffic
lights actually have three bits, one for red, one for
yellow and one for green. If you had only one bit, you
could just have a red light at the intersection, and
when it was on that would mean stop, and when it was off
that would mean go. But when it was off, you might
wonder whether it was really off, or whether the bulb
had just burned out. So using three bits is a lot more
useful in this case.
In the real world, we have already seen that computers
can contain letters, words, sentences, entire books, as
well as numbers, pictures, sounds and more. And yet, all
of this does come down to nothing more than bits.
If we want our computer memory to be able to hold more
than an on or off, or yes or no, we will have to have
something more than just one bit. Fortunately, we can do
something much more useful just by using several bits
together, and then making up a code (or maybe several
codes) to assign some useful meaning to them.

39

A Rose by Any Other Name
Before we go on, we are going to introduce a change to
what we call something. As we know, all of the bits in
the computer are places where there is or is not, some
electricity. We call these states, “on” and “off,” and
that is exactly what they are. Even though these are
short words, there are places where it is a lot easier,
clearer and simpler to use a single symbol to describe
these states. Fortunately, we’re not going to invent
anything tricky, we’re just going to use two symbols you
already know well, the numbers zero and one. From here
on out, we will call off 0, and we will call on 1. And
sometimes we will still use on and off.
Thus the chart for our NAND gate will look like this:

a b c

0 0 1

0 1 1

1 0 1

1 1 0

This is very easy to understand, of course, but the
point that needs to be made here, is that the computer
parts have not changed, the only thing that has changed
is what we, as people looking at the machine, are
calling it. Just because we call a bit a zero or one,
that doesn’t mean that suddenly numbers have appeared
and are running around inside the computer. There are
still no numbers (or words or sounds or pictures) in a
computer, only bits, exactly as previously described. We

40

could have called them plus and minus, yes and no, true
and false, heads and tails, something and nothing, north
and south, or even Bert and Ernie. But zero and one will
do it. This is a just a simple, two item code. On means
1, and off means 0.
As a comment here, there seems to be a trend among the
appliance manufacturers of the world to replace the
obsolete and old-fashioned terms of on and off with the
modern 0 and 1. On many power switches they put a 0 by
the off position, and a 1 by the on position. The first
place I saw this was on a personal computer, and I
thought that it was a cute novelty, being on a computer,
but now this practice has spread to cell phones, coffee
makers and automobile dashboards. But I think that this
is a mistake. Do you understand that the code could just
as easily have been defined as “off means 1 and on means
0?” The computer would work exactly the same way, only
the printing in the technical manuals that describe what
is happening inside the computer would change.
When you see one of these 0/1 switches, you have to
translate it back from this very commonly used computer
code into what it really means, on or off. So why
bother? You don’t want to turn your coffee machine ‘1’,
you want the power ON so you can get your java and wake
up already. Imagine putting these symbols on a waffle
maker back in 1935. Nobody would have had any idea of
what it meant. It is probably just so that manufacturers
don’t have to have switches printed in different
languages. Or maybe this trend comes from an altruistic
desire to educate the public into the modern ‘fact’ that
a 1 is the same as on, but it isn’t a fact, it’s an
arbitrary code.

41

Eight Is Enough
In order to be able to represent something more than
simple yes/no matters, what we are going to do is to
stack up eight bits in a single package, and use them as
a single unit. Here is a diagram of how it is done. We
have taken eight of our memory bits, each one still has
its own data input ‘i’ and its own output ‘o,’ but we
have wired all eight of the set inputs ‘s’ together.
Thus when the single ‘s’ gets turned on and then off
again, all eight of these ‘M’s will capture the states
of their corresponding ‘i’s at the same time. The
picture on the left shows all eight ‘M’s, the one on the
right is the same thing, just a little simpler.

42

This assembly has a name; it is called a byte, thus the
“B” in the diagram. There are several conflicting
explanations of exactly where this word came from, but
since it sounds just like the word “bite,” you can just
think of it as a whole mouthful compared with a smaller
unit, a bit. Just to show you that computer designers do
have a sense of humor, when they use four bits as a
unit, they call it a nibble. So you can eat a tiny bit
of cherry pie, or have a nibble or take a whole byte.
When we had a bit, we would just say that its state was
either 0 or 1. Now that we have a byte, we will write
the contents of the byte like this: 0000 0000, and you
can see why we switched from using off/on to 0/1. That

43

shows the contents of each of the eight bits, in this
case they are all zeros. The space in the middle is just
there to make it a little easier to read. The left hand
0 or 1 would correspond to the top bit in our byte, and
the rightmost 0 or 1 would represent the bottom bit.
As you had better know by now, a bit has two possible
states that it can be in — on or off. If you have two
bits, there are four possible states that those two bits
can be in. Do you remember the chart we drew for the
inputs of the NAND gate? There were four lines on the
chart, one for each possible combination of the two
input bits to the gate, 0-0, 0-1, 1-0 and 1-1.
Notice that the order of the bits does matter – that is,
if you look at two bits and only ask how many bits are
on, there are only three possibilities: no bits on, one
bit on or two bits on. That would be calling the 1-0 and
0-1 combinations the same thing. For the purpose of
using multiple bits to implement a code, we definitely
care about the order of the bits in a byte. When there
are two bits, we want to use all four possibilities, so
we have to keep the bits in order.
How many different possibilities are there when you use
eight bits? If all you have is one bit, it can be in one
of two states. If you add a second bit, the pair has
twice as many states as before because the old bit has
its two states while the new bit is one way, and then
the old bit has its two states while the new bit is the
other way. So two bits have four states. When you add a
third bit, the first two have four states with the new
bit off and four states with the new bit on, for a total
of eight states. Every time you add a bit, you just
double the number of possible states. Four bits have 16
states, five have 32, six have 64, seven have 128, eight
have 256, nine have 512 states, and so on.
We are going to take eight bits, and call it a byte.
Since a bit is a thing that has a location in space,
that can be in one of two states, then a byte is a thing
that has eight separate locations in space, each of
which can be on or off, that are kept in the same order.
The byte, taken as a whole, is a location in space that
can be in any one of 256 states at any given time, and
may be made to change its state over time.

44

Codes
A bit could only represent yes/no types of things, but
now that we have 256 possibilities, we can look for
things in our lives that are slightly more complicated.
One of the first things that might fit the bill is
written language. If you look in a book and see all of
the different types of symbols that are used to print
the book, you will see all 26 letters of the alphabet in
uppercase as well as lowercase. Then there are the
numbers 0 through 9, and there are punctuation marks
like periods, commas, quotes, question marks,
parentheses and several others. Then there are special
symbols like the ‘at’ sign (@,) currency ($,) and more.
If you add these up, 52 letters, 10 numbers, a few dozen
for punctuation and symbols, you get something like 100
different symbols that may appear printed on the pages
of the average book.
From here on out, we will use the word ‘character’ to
mean one of this sort of thing, one of the letters,
numbers, or other symbols that are used in written
language. A character can be either a letter, a number,
a punctuation mark or any other type of symbol.
So we have written language with about 100 different
characters, and our byte with 256 possibilities, maybe
we can represent language with bytes. Lets see, how do
you put an ‘A’ into a byte? There is nothing inherent in
a byte that would associate it with a character, and
there is nothing inherent in a character that has
anything to do with bits or bytes. The byte doesn’t hold
shapes or pictures. Dividing a character into eight
parts does not find any bits.
The answer, as before, is to use a code to associate one
of the possible states of the byte with something that
exists in the real world. The letter ‘A’ will be
represented by a particular pattern of 1s and 0s in the
bits of a byte. The byte has 256 different possible
states, so someone needs to sit down with pencil and
paper and list out all 256 of those combinations, and
next to each one, put one of the characters that he
wants that pattern to represent. Of course, by the time

45

he gets to the 101st line or so, he’ll run out of
characters, so he can add every type of rarely used
symbol he can think of, or he can just say that the rest
of the combinations will have no meaning as far as
written language is concerned.
And so, in the early days of computers, each
manufacturer sat down and invented a code to represent
written language. At some point, the different companies
realized that it would be beneficial if they all used
the same code, in case they ever wanted their company’s
computers to be able to communicate with another brand.
So they formed committees, held meetings and did
whatever else they needed to do to come up with a code
that they could all agree on.
There are several versions of this code designed for
different purposes, and they still hold meetings today
to work out agreements on various esoteric details of
things. But we don’t need to concern ourselves with all
that to see how a computer works. The basic code they
came up with is still in use today, and I don’t know of
any reason why it would ever need to be changed.
The code has a name, it is the: American Standard Code
for Information Interchange. This is usually abbreviated
to ASCII, pronounced “aass-key.” We don’t need to print
the whole code here, but here’s a sample. These are 20
of the codes that they came up with, the first 10
letters of the alphabet in uppercase and lowercase:

PART OF ASCII CODE TABLE

A 0100 0001 a 0110 0001

B 0100 0010 b 0110 0010

C 0100 0011 c 0110 0011

D 0100 0100 d 0110 0100

E 0100 0101 e 0110 0101

F 0100 0110 f 0110 0110

G 0100 0111 g 0110 0111

H 0100 1000 h 0110 1000

46

I 0100 1001 I 0110 1001

J 0100 1010 j 0110 1010

Each code is unique. It’s interesting to note the way
that they arranged the codes so that the codes for
uppercase and lowercase of the same letter use the same
code except for one bit. The third bit from the left is
off for all uppercase letters, and on for all lowercase
letters.
If you wanted to put a message on your computer screen
that said “Hello Joe” you would need nine bytes. The
first byte would have the code for uppercase “H”, the
second byte would have the code for lowercase “e”, the
third and fourth bytes would have the code for lowercase
“l”, the fifth byte would have the code for lowercase
“o”, the sixth byte would have the code for a blank
space, and bytes seven, eight and nine would contain the
codes for “J”, “o” and “e.”
Notice that there is even a code for a blank space (it
is 0010 0000 by the way.) You may wonder why there needs
to be a code for a blank space, but that just goes to
show you how dumb computers are. They don’t really
contain sentences or words, there are just a number of
bytes set with the codes from the ASCII code table that
represent the individual symbols that we use in written
language. And one of those “symbols,” is the lack of any
symbol, called a space, that we use to separate words.
That space tells us, the reader, that this is the end of
one word and the beginning of another. The computer only
has bytes, each of which can be in one of its 256
states. Which state a byte is currently in, means
nothing to the computer.
So let us take a memory byte, and set the bits to 0100
0101. That means that we have put the letter E into the
byte, right? Well… not really. We have set the pattern
that appears next to the letter E in the ASCII code
table, but there is nothing inherent in the byte that
has to do with an ‘E.’ If Thomas Edison had been testing
eight of his new experimental light bulbs, and had them
sitting in a row on a shelf, and the first, third,
fourth, fifth and seventh light bulbs had burned out,
the remaining light bulbs would be a byte with this

47

pattern. But there wasn’t a single person on the face of
the Earth who would have looked at that row of bulbs and
thought of the letter ‘E,’ because ASCII had not yet
been invented. The letter is represented by the code.
The only thing in the byte is the code.
There you have the subject of codes. A computer code is
something that allows you to associate each of the 256
possible patterns in a byte with something else.
Another language note here, sometimes the word code
refers to the whole list of patterns and what they
represent, as in “This message was written with a secret
code.” Sometimes code just refers to one of the
patterns, as in “What code is in that byte?” It will be
pretty obvious from the context which way it is being
used.

48

Back to the Byte
Do you remember the memory byte we drew a few chapters
ago? It was eight memory bits with their ‘s’ wires all
connected together. Almost every time that we need to
remember a byte inside a computer, we also need an
additional part that gets connected to the byte’s
output. This extra part consists of eight AND gates.
These eight AND gates, together, are called an
“Enabler.” The drawing on the left shows all of the
parts, the drawing on the right is a simpler way to draw
it.

49

The second input of all eight AND gates are connected
together and given the name ‘enable,’ or ‘e’ for short.
When ‘e’ is off, whatever comes into the Enabler goes no
further, because the other side of each AND gate is off,
thus the outputs of those gates are all going to be off.
When ‘e’ is on, the inputs go through the Enabler
unchanged to the outputs, ‘o.’
By the way, when gates are used for something like this,
the name “gate” starts to make some sense. An Enabler
allows a byte through when the bit ‘e’ is 1 and stops
the byte when it is 0. So ‘e’ being on is like opening a
gate, and ‘e’ being off is like closing a gate.

50

We will take our byte, and connect it to an enabler, as
shown in the left hand drawing. To simplify once again,
we can draw it as shown on the right.

Now we have a combination that can store eight bits. It
captures them all at the same time, and it can either
keep them to itself, or let them out for use somewhere
else. This combination of a Byte and an Enabler, has a
name, it is called a Register, thus the ‘R’ in the
drawing.
There will be a few places in this book where there are
registers that never need to have their outputs turned
off. In those cases, we will draw a register that only
has a ‘set’ bit, and no ‘enable’ bit. We should probably
refer to these devices as ‘bytes,’ but we will call them
registers nonetheless.
Register simply means a place to record some kind of
information, like a hotel register where all the guests
sign in, or a check register where you write down each
check that is written. In the case of this computer
part, you record the state of the eight input bits. This
register is very limited though, in that it can only
hold one set of values; in a hotel register there is a
new line for each guest. Every time you store a new
state in a computer register, the previous state of the
eight memory bits is lost. The only thing that is in
there is the most recently saved value.

51

The Magic Bus
There are many places in a computer where eight wires
are needed to connect registers together. Our register,
for example, has eight memory bits, each of which have
an input and an output. To simplify our diagrams, we
will replace our eight wires with a double line.
So our register can look like one of these:

Or, we can simplify, and replace it with one of these:

It’s exactly the same thing, we will just save a lot of
ink in our drawings, and they will be easier to
understand.
When there is a connection between two of these bundles
of wires, one wire of each bundle is connected to one
wire of the other bundle as shown in the diagram on the
left. But we will simplify it, and just draw it like the
diagram on the right.

52

Now, this grouping of eight wires is so common inside
computers that it has a name. It is called a bus. Why is
it called a bus? Well, it probably has to do with the
old electrical term ‘buss,’ that means a bar of metal
used as a very large wire in places like power
generating plants. But there is also an interesting
similarity to the kind of bus that people use for
transportation.
A bus is a vehicle that commonly travels along a
predetermined route, and makes many stops where people
get on or off. They start somewhere, and the bus takes
them to some other place they need to be. In the world
of computers, a bus is simply a set of eight wires that
goes to various places inside the computer. Of course,
eight is the number of wires needed to carry a byte of
information. Inside the computer, the contents of bytes
need to get from where they are to other places, so the
bus goes to all these places, and the design of the
register allows the contents of any selected byte to get
onto the bus, and get off at a selected destination.
In the following example, we have a bus, and there are
five registers, each of which has both its input and
output connected to the same bus.

If all of the ‘s’ bits and ‘e’ bits are off, each
register will be set the way it is, and will stay that
way. If you want to copy the information from R1 into
R4, first you turn the ‘e’ bit of R1 on. The data in R1
will now be on the bus, and available at the inputs of
all five registers. If you then briefly turn the ‘s’ bit

53

of R4 on and back off, the data on the bus will be
captured into R4. The byte has been copied. So a
computer bus is a little like the bus that carries
people. There are a number of stops, and bytes can get
to where they need to go.
Notice that we can copy any byte into any other byte.
You can copy R2 into R5, or R4 into R1. The bus works in
either direction. The electricity put on the bus when
you enable any register goes as fast as possible to the
inputs of everything else on the bus. You could even
enable one register onto the bus and set it into two or
more other registers at the same time. The one thing you
don’t want to do is to enable the outputs of two
registers onto the bus at the same time.
In terms of the sizes of bits, you could look at it this
way: When the ‘e’ bit of R1 gets turned on, the bits in
R1 now get longer, they are a bigger space because they
are now connected to the bus, so those 8 bits now
include R1 and the entire bus. When the ‘s’ bit of R4
gets turned on, the R1 bits get even bigger because they
now include R1, the bus and R4. If anything in R1 were
to somehow change at this time, the bus and R4 would
immediately change with it. When the ‘s’ bit of R4 gets
turned off, R4 regains its status as a separate byte,
and when the ‘e’ bit of R1 turns off, the bus ceases
being a part of R1.
So this is a bus. It is a bundle of eight wires that
typically goes to many places.
One more thing about registers: There are many places
where we are going to connect the input and output of a
register to the same bus, so to simplify even further,
we can just show one bundle of wires labeled ‘i/o,’
meaning input and output. All of the following are
exactly equivalent as far as how they work. The
placement of the wires on the drawing may be adjusted to
make it as uncluttered as possible.

54

Another language note: A byte is a location that can be
in one of 256 states. Sometimes we talk about moving a
byte from here to there. By definition, bytes do not
move around inside the computer. The byte only refers to
the location, but sometimes when someone wants to refer
to the current setting of the byte, and they ought to
say “lets copy the contents of R1 into R4,” they
simplify and say “move R1 to R4” or “move this byte over
there.” They’re using the word byte to refer to the
contents of the byte. Again, the context usually makes
this very clear. In the example above of copying the
contents of R1 into R4, you may hear it described as
“moving a byte from R1 to R4.” Technically, R1 and R4
are the bytes, which do not move, only the contents goes
from place to place.
Also, the contents do not leave the place where they
came from. When you are done “moving” a byte, the “from”
byte has not changed, it doesn’t lose what it had. At
the other end, the pattern that was originally in the
“to” byte is now “gone,” it didn’t go anywhere, it was
just written over by the new information. The old
pattern simply ceases to exist. The new information is
exactly the same as what is still in the first byte. The
byte didn’t move, there are still two bytes in two
locations, but the information in the first byte has
been copied into the second byte.

55

More Gate Combinations
Now we are going to show just two more combinations, and
then we will be able put together what we know so far,
to make the first half of a computer. So don’t get
discouraged, just a little further and we’ll be half way
home.
The first combination is very simple. It is just an AND
gate with more than two inputs. If you connect two AND
gates like this diagram on the left, you see that for
‘d’ to be on, all three inputs, ‘a,’ ‘b’ and ‘c’ have to
be on. So this combination can simply be drawn like this
diagram on the right:

And the chart that shows how it operates looks like
this:

a b c d

0 0 0 0

0 0 1 0

0 1 0 0

0 1 1 0

1 0 0 0

1 0 1 0

56

1 1 0 0

1 1 1 1

Imagine replacing input ‘c’ with another AND gate, then
you would have a four input AND gate. You could then
replace any of the four inputs with another AND gate,
and have a five input AND gate. This can be done as many
times as necessary for what you are doing.
As you add inputs, the chart will need more and more
lines. Every time you add another input, you double the
number of combinations that the inputs can have. The
chart we saw for the original two input AND gate had
four lines, one for each possibility. The three input,
directly above, has eight lines. A four input AND gate
will have 16 lines, a five input will have 32, etc. In
all cases though, for an AND gate, only one combination
will result in the output turning on, that being the
line where all inputs are on.

Here is the last combination we need to make the first
half of a computer. This combination is different from
anything we have looked at so far, in that it has more
outputs than inputs. Our first example has two inputs
and four outputs. It is not very complicated, it just
has two NOT gates and four AND gates.
In the diagram below, ‘a’ and ‘b’ are the inputs coming
in from the left. Both of them are connected to NOT
gates. The NOT gates generate the opposite of their
inputs. There are four vertical wires going down the
page that come from ‘a’ and ‘b’ and the opposites of ‘a’
and ‘b.’ Thus, for each ‘a’ and ‘b,’ there are two wires
going down the page, where one of them will be on if its
input is on, and the other will be on if its input is
off. Now we put four AND gates on the right, and connect
each one to a different pair of the vertical wires such
that each AND gate will turn on for a different one of
the four possible combinations of ‘a’ and ‘b.’ The top

57

AND gate, labeled “0/0” is connected to the wire that is
on when ‘a’ is off, and the wire that is on when ‘b’ is
off, and thus turns on when ‘a’ and ‘b’ are both 0. The
next AND gate, “0/1” is connected to the wire that is on
when ‘a’ is off, and ‘b,’ so it turns on when ‘a’ is 0
and ‘b’ is 1, etc.
The inputs can be on in any combination, both bits off,
one on, the other on, or both on. None, one or two on.
The outputs, however, will always have one and only one
output on and the other three off. The one which is on
is determined by the current states of ‘a’ and ‘b.’

a b 0/0 0/1 1/0 1/1

58

0 0 1 0 0 0

0 1 0 1 0 0

1 0 0 0 1 0

1 1 0 0 0 1

This combination is called a decoder. The name means
that if you consider the four possible states of the two
inputs as a code, then the output tells you which of the
codes is currently on the input. Maybe it’s not a great
name, but that’s what it meant to someone once, and the
name stuck. This decoder has two inputs, which means
that there can be four combinations of the states of the
inputs, and there are four outputs, one corresponding to
each of the possible input combinations.
This can be extended. If we added a third input, there
would then be eight possible input combinations, and if
we used eight, three input AND gates, we could build a
three input, eight output decoder. Similarly, we could
build a four input, 16 output decoder. Decoders are
named by the number of inputs “X” the number of outputs.
Like 2X4, 3X8, 4X16, 5X32, 6X64, etc.

59

Again, we will simplify our drawings, we won’t show any
of the internal parts or wiring, we’ll just have a box
with a name and the inputs and outputs that we are
interested in. We have seen how NAND gates make NOT
gates and AND gates, and then NOT gates and AND gates
make a Decoder. It is a box full of NAND gates wired up
to do something useful. We know what it does, one and

60

only one of the outputs is always on, and which one it
is, is determined by the state of the three inputs.
That’s all it does.

61

First Half of the Computer
Lets build something with the parts we have so far.
Actually, we can now build fully half of what’s in a
computer.
First, let’s build something similar out of wood (in our
minds,) then we’ll come back and show how to build a
computer version that does pretty much the same thing.
You know in a hotel, at the front desk, on the wall
behind the clerk, there are a series of little wooden
cubbyholes, one for each room in the hotel. That’s where
they keep extra room keys and messages or mail for the
guests. Or you may have seen an old movie where someone
in an old post office was sorting the mail. He sits at a
table with a series of cubbyholes at the back. He has a
pile of unsorted mail on the table, picks up one at a
time, reads the address, and puts the letter in the
appropriate cubbyhole.
So we’re going to build some cubbyholes. Ours will be
three inches square, and there will be sixteen
cubbyholes high and sixteen cubbyholes across. That’s a
total size of four feet by four feet, with a total of
two hundred fifty six cubbies.
Now we’ll add something that they don’t have in the post
office or the hotel. We’re going to put a large wood
panel right in front of the cubbies which is twice as
wide as the whole thing, and in the middle it has a
vertical slot that is just large enough to expose one
column of 16 cubbies. The panel will have wheels on the
bottom so it can slide left and right to expose any one
of the vertical columns of sixteen cubbies at a time,
and cover all of the other columns.
Let’s take another wood panel just like the first, but
turn it up sideways so it is twice as high as our
cubbyholes, and the slot in the middle goes side to
side. This second panel will be mounted right in front
of the first, in something like a window frame, so it
can slide up and down, exposing just one row of sixteen
cubbies at a time.
So now we have a series of 256 cubbyholes, and two
slotted wooden panels in front of them that allow only

62

one cubby at a time to be visible. In each of these
cubbies, we will place a single slip of paper on which
we will write one of the possible combinations of eight
zeros and ones.
This cubbyhole device has 256 places to store something.
At any given time, we can select one and only one of
those places by sliding the wood panels side to side or
up and down. At the selected cubbyhole, we can reach in
and get the slip of paper and read it, or replace it
with another one.

Now we will take the gates, registers and decoders that
we have described, and make something out of them that
does pretty much the same thing as our cubbyhole device.
This thing will have 256 places in which to store
something, and we will be able to select one and only
one of those places at any given time.
Referencing the diagram below, we start with a single
register. Its input ‘a,’ is a bus that comes from
somewhere else in the computer. A combination of bits is
placed on the bus and the ‘sa’ (set a) bit goes 1 then
0. That bit pattern is now stored in this register,
which is one of those registers whose output is always
on. The first four output bits are connected to one 4X16
decoder, and the other four output bits are connected to
another 4X16 decoder. The outputs of the two decoders
are laid out in a grid pattern. The wires do not touch
each other, but there are 16 by 16, or 256 intersections
here that we will make use of soon. A decoder, as
stated, has one and only one of its outputs on at any
time, and the rest are off. Since we have two decoders
here, there will be one horizontal grid wire on, and one
vertical grid wire on. Therefore, of these 256
intersections, there will be only one intersection where
both the horizontal and vertical wires are on. Which
intersection that is will change every time the value in
R is changed, but there will always be one where both
wires are on while the other 255 will have only one on
or none on.

63

At the bottom of this diagram is one bus and an ‘s’ and
‘e’ bit, just the same as the connections that go to a
register. As you can see, they go upwards and into the
grid. The diagram doesn’t show it, but they go up under

64

the grid all the way to the top, so that each of the 256
intersections has a bus and an ‘s’ and ‘e’ bit nearby.
There is a circle on the diagram above, around one of
the intersections of the grid. What is in this circle is
magnified in the diagram below, showing that there are
three AND gates and one register at each of the 256
intersections. As we can see, there is an AND gate ‘x,’
connected to the one vertical grid wire and the one
horizontal grid wire at this intersection. These ‘x’
gates are the only things connected to the grid. The
rest of the connections go down to the bus and ‘s’ and
‘e’ bits at the bottom of the diagram. Remember that
there is only one intersection where both grid wires are
on. Therefore, there are 256 of these ‘x’ gates, but
only one of them has its output on at any given time.
The output of that ‘x’ gate goes to one side each of two
more AND gates. These two gates control access to the
set and enable inputs of the register at that
intersection. So when an ‘x’ gate is off, the ‘s’ and
‘e’ bits of that register cannot be turned on. That will
be the case for 255 of these registers, the ones where
the ‘x’ gate is off. But one intersection has its ‘x’
gate on, and its register can be set from the bus, or
its contents can be enabled onto the bus and sent
elsewhere by using the ‘s’ and ‘e’ bits at the bottom of
the diagram.

65

The above is the computer’s main memory. It is half of
what is necessary to build a computer. It is sometimes
called by different names, but the most correct name
comes from the fact that you can select any one of the
256 bytes one moment, and then you can immediately
select any other of the 256 bytes, and it does not
matter where the last one was, or where the next one is,
there is no speed advantage or disadvantage to the order
in which you select the bytes. Because of this quality,
this is a good type of memory to use if you want to be
able to access the bytes of memory in a random order. So
this type of memory is called “Random Access Memory,” or
“RAM” for short.
This is RAM. It uses 257 registers. 256 registers are
memory storage locations, one register is used to select
one of the storage locations and is called the “Memory
Address Register” or “MAR” for short. Now that we know
what’s in it, we can make a simplified diagram like
this, and an even simpler bus version:

66

This is fully half of a computer. A computer has just
two parts, and this is one of them. So now you know half
of what is inside a computer. Every part is made out of
NAND gates. That wasn’t very difficult was it?

There is one problem here, and that is that 256 bytes is
a very small size for a computer’s RAM. We may be able
to get away with it in this book, but if you want a real
computer, it’s going to need a RAM with many more bytes
to choose from.
A larger RAM can be built by providing two registers
that are used to select a memory storage location. This
allows the use of 8X256 decoders, and results in a grid
with 65,536 intersections, and thus a RAM with 65,536
different locations in which to store something.
Here’s an idea of what it would look like: (Don’t bother

67

trying to count the grid lines, it was only possible to
fit about half of them on the printed page.)

68

69

A bus carries one byte at a time, so selecting one of
the 65,536 memory locations of this RAM would be a two-
step process. First, one byte would have to be placed on
the ‘a’ bus and set into R0, then the second byte would
have to be placed onto the ‘a’ bus and set into R1. Now
you could access the desired memory location with the
bus and the ‘s’ and ‘e’ bits at the bottom of the
drawing.
Simplifying again, we have something that looks very
much like our 256 byte RAM, it just has one more input
bit.

For the rest of this book, we will be using the 256 byte
RAM just to keep things simple. If you want to imagine a
computer with a larger RAM, every time we send a byte to
the Memory Address Register, all you have to do is
imagine sending two bytes instead.

70

Numbers
We are going to return to the subject of codes for a
moment. Previously we looked at a code called ASCII that
is used to represent written language. Well, numbers are
used in written language too, so there are ASCII codes
for the digits zero through nine. Earlier we saw 20 of
the ASCII codes for part of the alphabet, here are 10
more, the codes for numbers in written language:

0 0011 0000

1 0011 0001

2 0011 0010

3 0011 0011

4 0011 0100

5 0011 0101

6 0011 0110

7 0011 0111

8 0011 1000

9 0011 1001

This is a very useful code, but not everything that
computers do has to do with written language. For other
tasks, there are other codes that are suited better to
those tasks. When it comes to numbers, if you use ASCII,
one byte can be any of the 10 digits from 0 to 9. But
sometimes there is a byte that is always used to store a
number, and that number will never be printed or
displayed on the screen. In this case, we can use a
different code that doesn’t waste any of its possible
states on letters of the alphabet or anything other than
numbers. Since a byte has 256 possible states, you can

71

have this code represent 256 different numbers. Since we
want to include zero, this code starts at zero and goes
up to 255.
Now how is this code arranged? The ASCII above is not
used at all; this is a completely different code. This
code did not require any committee meetings to invent
because it is the simplest and most obvious code that
computers use. It is the closest thing there is to a
‘natural’ computer code.
Since this is a long chapter, here is a preview of this
code. It consists of assigning a numeric value to each
bit in the byte. To use this code, just turn on the bits
that add up to the number you want to represent.

To see how this code works, why it is used in computers,
and how those bit values were chosen, we will examine
the subject of numbers outside of computers.
There are three number systems that you are probably
familiar with that we can analyze. As I see it, these
three systems are each made up of two ideas or elements
– first, a list of symbols, and second, a method for
using those symbols.
Probably the oldest number system around is a simple
thing called Tally Marks. It has two symbols, “|” and
“/.” The method for using these symbols is that you
write down a “|” for each of the first four things you
are counting, then for the fifth mark, you write a “/”
across the first four. You repeat this over and over as
long as necessary and then when you’re done you count
the marks by groups of five – 5, 10, 15, 20, etc. This
system is very good for counting things as they pass by,
say your flock of sheep. As each animal walks by, you
just scratch down one more mark – you don’t have to
cross out ‘6’ and write ‘7’. This system has another
advantage in that there is actually one mark for each

72

thing that has been counted. Later in the chapter we are
going to do some interesting things with numbers that
may get confusing, so in order to keep things clear, we
will make use of this old system.
Do you remember Roman numerals? It is a number system
that also consists of two elements. The first element is
the symbols, just selected letters from the alphabet,
‘I’ for one, ‘V’ for five, ‘X’ for ten, ‘L’ for fifty,
‘C’ for one hundred, ‘D’ for five hundred, ‘M’ for one
thousand. The second element is a method that allows you
to represent numbers that don’t have a single symbol.
The Roman method says that you write down multiple
symbols, the largest ones first, and add them up, except
when a smaller symbol is to left of a larger one, then
you subtract it. So ‘II’ is two (add one and one,) and
‘IV’ is four (subtract one from five.) One of the things
that made this author very happy about the coming of the
year 2000 was the fact that Roman numerals representing
the year got a lot simpler. 1999 was ‘MCMXCIX,’ you have
to do three subtractions in your head just to read that
one. 2000 was simply ‘MM.’
The normal number system we use today also consists of
two ideas, but these are two very different ideas that
came to us through Arabia rather than Rome. The first of
these ideas is also about symbols, in this case 0, 1, 2,
3, 4, 5, 6, 7, 8 and 9. These digits are symbols that
represent a quantity. The second idea is a method that
we are so used to, that we use it instinctively. This
method says that if you write down one digit, it means
what it says. If you write down two digits next to each
other, the one on the right means what it says, but the
one to its left means ten times what it says. If you
write down three digits right next to each other, the
one on the right means what it says, the middle one
means ten times what it says and the one on the left
means one hundred times what it says. When you want to
express a number greater than 9, you do it by using
multiple digits, and you use this method that says that
the number of positions to the left of the first digit
tells you how many times you multiply it by ten before
you add them up. So, if you have ‘246’ apples, that
means that you have two hundred apples plus forty apples
plus six apples.

73

So how does this work? A number of any amount can be
written with the digits zero through nine, but when you
go higher than nine, you have to use two digits. When
you go above ninety-nine, you have to use three digits.
Above nine hundred ninety-nine, you go to four digits,
etc. If you are counting upwards, the numbers in any one
of the positions go ‘round and ‘round - zero to nine,
then zero to nine again, on and on, and whenever you go
from nine back to zero, you increase the digit to the
left by 1. So you only have ten symbols, but you can use
more than one of them as needed and their positions with
regard to each other specify their full value.
There is something odd about this in that the system is
based on ten, but there is no single symbol for ten. On
the other hand, there is something right about this –
the symbols ‘0’ through ‘9’ do make up ten different
symbols. If we also had a single symbol for ten, there
would actually be eleven different symbols. So whoever
thought of this was pretty smart.
One of the new ideas in this Arabic system was to have a
symbol for zero. This is useful if you want to say that
you have zero apples, but it is also a necessary thing
to keep the positions of the digits straight. If you
have 50 apples or 107 apples, you need the zeros in the
numbers to know what position each digit is actually in,
so you can multiply by ten the correct number of times.
Now these two ideas in the Arabic number system (the
digits and the method) have one thing in common. They
both have the number ten associated with them. There are
ten different digits, and as you add digits to the left
side of a number, each position is worth ten times more
than the previous one.
In school, when they first teach children about numbers,
they say something about our number system being based
on the number ten, because we have ten fingers. So
here’s an odd question: What if this number system had
been invented by three-toed sloths? They only have three
fingers on each hand, and no thumbs. They would have
invented a number system with only six digits- 0, 1, 2,
3, 4 and 5. Could this work? If you had eight apples,
how would you write it? There is no number ‘8’ in this
system. The answer is, that since the first idea, the

74

digits, was changed to only have six digits, then the
second idea, the method, would also have to be changed
so that as you add positions to the left, each one would
have to be multiplied by sixes instead of tens. Then
this system would work. As you count your apples, you
would say “0, 1, 2, 3, 4, 5…” and then what? There’s no
‘6’ for the next number. Well, according to the method,
when you want to go beyond the highest digit, you go
back to ‘0’ and add a ‘1’ to the left. OK, “0, 1, 2, 3,
4, 5, 10, 11, 12.” Now you have counted all of your
apples. What would this ‘12’ mean? It would be this

many: . I guess you’d call it eight, but you’d write
it ‘12’. Very odd, but it does work out - 1 times six
plus two equals eight apples, it follows the Arabic
method, but it is based on six instead of ten. If you
continued counting up, when you got to ‘15,’ which is

 (one times six plus five,) the next number would
be ‘20,’ but the ‘2’ would mean two sixes, or this many:

. And 55 would be followed by 100. The ‘1’ in that
third position would be how many ‘36’s there were (six
times six)
This is a very odd number system, but guess what, you
already use it in your everyday life. Yes, think of the
way we write time, or the kind of clock that shows the
numbers on its face. The right digit of the minutes and
seconds follows our normal numbers, 0-9, 0-9, over and
over. But the left digit of the minutes and seconds only
goes 0-5. After 59 minutes, the clock goes to the next
hour and 00 minutes. There are 60 minutes in an hour,
numbered from 00 to 59. That left position never gets
over 5. That position uses the number system based on
six symbols (0-5). The hour part of the clock tells how
many ‘60’s there are, though you will never see a 60 on
the face of the clock. And you are so used to this that
you don’t have to think about it. When the clock says
1:30, you know that this is halfway between 1:00 and
2:00, you don’t have to do any math in your head to
figure it out. Have you ever had to add time? If you add
40 minutes and 40 minutes, you get 80 minutes, but to
write that down in hours and minutes, you have to figure
out how many 60s there are in 80, in this case 1, then
figure out how many minutes there are beyond 60, in this

75

case 20. So you write 1:20. The 1 represents 60 minutes,
add 20 and you have your 80 again. So this is pretty
complicated, two different number systems in the same
number! But you have already been using it your whole
life.

The hour positions are even stranger. On a 12 hour
clock, it skips zero and goes 1-12 AM, then 1-12 PM. On
a 24 hour clock, it goes from 00-23. We won’t try to
analyze these. The point we wanted to make was that you
are already familiar with number systems based on
numbers other than ten.
You could invent a number system for any amount of
digits, 10 or 6 like we’ve seen above, or 3 or 14 or any
number you choose. But the simplest one would be if you
only had 2 digits, 0 and 1. How would this one work?
Well, you’d count 0, 1… and then you’re already out of
digits – so back to 0 and add 1 on the left, making the
next number 10 then 11, then you’re out of digits again,
so 100 then 101, 110, 111 then 1000. This system is
based on two, so there are only two digits, and as you
add positions to the left, each one is worth two times
more than the previous one. The right position means
what it says, the next one to the left means two times
what it says, the next means four times what it says,
the next means eight times, etc. When you get down to
only having two possible digits, you don’t have to do
much multiplication to figure out the total value of a
position. In the position that is worth ‘eight,’ for
example, there can only be a one, meaning one ‘eight,’
or a zero, meaning ‘no eights.’
While we’re at it, let’s imagine a very strange animal
with eight fingers on each hand. That animal would have
invented numbers based on sixteen. In their system, they
would be able to write ten through fifteen each with a

76

single symbol. Only when they arrived at sixteen would
they get back around to 0 and need to put a 1 in the
position to the left. To see how this would work, we
need six new symbols, so let’s just use the first six
letters of the alphabet. ‘A’ will mean ten, ‘B’ will
mean eleven, ‘C’ will mean twelve, ‘D’ will mean
thirteen, ‘E’ will mean fourteen and ‘F’ will mean
fifteen. Only after using all sixteen symbols in the
right position will we run out of symbols, and the next
number will be sixteen, written ‘10’ in this system. If
you’re familiar with the pounds and ounces system of
weights, it’s sort of like this system. There are 16
ounces in a pound, so you know that 8 ounces is half a
pound. Adding 9 ounces and 9 ounces comes out to 1 pound
2 ounces.
Here is a chart that shows five different number
systems. The first column is the old tally mark system
to keep it sensible.

77

Our normal 0-9 numbers are called the decimal system,
because ‘dec’ means ten in some ancient language. The 0-
5 system would be called the senary system, because
‘sen’ means six in some other ancient language. This new

78

system with just 0 and 1 is called the binary system
because ‘bi’ means two, also because of some ancient
language. This other new system, the 0-F system, will be
called the hexadecimal system, because ‘hex’ is another
ancient word that means six and ‘dec’ still means ten,
so it’s the six plus ten system.
Another method of naming different number systems is to
call them by the number they are based on, such as ‘base
10’ or ‘base 2,’ etc. meaning decimal or binary, etc.
But notice that the number after the word ‘base’ is
written in the decimal system. ‘2’ written in binary is
‘10,’ so ‘base 10’ would mean binary if the ‘10’ was
written in binary. In fact, every number system would be
‘base 10’ if the ‘10’ was written in that system’s
numbers! So we could talk about base 2, base 6, base 10
and base 16 if we wanted to, as long as we remember that
those base numbers are written in decimal. If we talk
about binary, senary, decimal and hexadecimal, it’s the
same thing, just possibly a little less confusing.
Again, in our normal decimal numbers, the rightmost
position is the number of ones. The next position to the
left is the number of tens, etc. Each position is worth
ten times the previous one. In the binary system, the
rightmost position is also the number of ones, but the
next position to the left is the number of ‘twos,’ the
next to the left is the number of ‘fours,’ the next is
‘eights.’ Each position is worth two times the amount to
its right. Since each position has only two possible
values, zero or one, this is something that we could use
in a byte.
This is the point of this chapter. The binary number
system is a ‘natural’ match to the capabilities of
computer parts. We can use it as a code, with off
representing zero and on representing one, following the
Arabic number method with only two symbols. In a byte,
we have eight bits. When we use this code, the bit on
the right will be worth 1 when the bit is on, or 0 when
it is off. The next bit to the left will be worth 2 when
it is on, or 0 when it is off. The next to the left is
4, and so on with 8, 16, 32, 64 and 128. In the order we
normally see them, the values of the eight bits look
like this: 128 64 32 16 8 4 2 1.

79

In this code, 0000 0001 means one, 0001 0000 means
sixteen, 0001 0001 means seventeen (sixteen plus one,)
1111 1111 means 255, etc. In an eight-bit byte, we can
represent a number anywhere from 0 to 255. This code is
called the “binary number code.”
The computer works just fine with this arrangement, but
it is annoying for people to use. Just saying what is in
a byte is a problem. If you have 0000 0010, you can call
it “zero zero zero zero zero zero one zero binary” or
you can mentally translate it to decimal and call it
“two,” and that is usually what is done. In this book
when a number is spelled out, such as ‘twelve,’ it means
12 in our decimal system. A binary 0000 0100 would be
called ‘four,’ because that is what it works out to be
in decimal.
Actually, in the computer industry, people often use
hexadecimal, (and they just call it ‘hex’.) If you look
at the chart above, you can see that four digits of
binary can be expressed by one digit of hex. If you have
a byte containing 0011 1100, you can translate it to 60
decimal, or just call it “3C hex.” Now don’t worry,
we’re not going to use hex in this book, but you may
have seen these types of numbers somewhere, and now you
know what that was all about.

80

Addresses
Now that we have the binary number code, we can use it
for various purposes in our computer. One of the first
places we will use it, is in the Memory Address
Register. The pattern of bits that we put into this
register will use the binary number code. The bits of
this number in MAR then select one of the 256 RAM
storage locations. The number in MAR is considered to be
a number somewhere between 0 and 255, and thus each of
the 256 RAM bytes can be considered to have an address.
This is fairly simple, but a point needs to be made here
about exactly what is meant by an address inside of a
computer. In a neighborhood of homes, each house has an
address, like 125 Maple Street. There is a sign at the
corner that says “Maple St.” and written on the house
are the numerals “125.” This is the way we normally
think of addresses. The point to be made here is that
the houses and streets have numbers or names written on
them. In the computer, the byte does not have any
identifying information on it or contained in it. It is
simply the byte that gets selected when you put that
number in the Memory Address Register. The byte gets
selected by virtue of where it is, not by any other
factor that is contained at that location. Imagine a
neighborhood of houses that had sixteen streets, and
sixteen houses on each street. Imagine that the streets
do not have signs and the houses do not have numbers
written on them. You would still be able to find any
specific house if you were told, for example, to go to
‘the fourth house on the seventh street.’ That house
still has an address, that is, a method of locating it,
it just doesn’t have any identifying information at the
location. So a computer address is just a number that
causes a certain byte to be selected when that address
is placed into the Memory Address Register.

81

The Other Half of the Computer
The other half of the computer is also made ultimately
of nothing but NAND gates, and it probably has fewer
total parts than the RAM we have built, but it is not
laid out so regularly and repetitively, so it will take
a little longer to explain. We will call this half of
the computer the “Central Processing Unit,” or CPU for
short, because it does something with and to the bytes
in RAM. It “processes” them, and we will see what that
means in the next few chapters. The thing that is common
to both sides of the computer is the bus.

Here are the beginnings of the CPU. The RAM is shown on
the right, and the bus makes a big loop between the two
bus connections on the RAM. The CPU starts with six

82

registers connected to the bus. These six registers are
all of the places that the CPU will use to “process”
bytes. That’s not so complicated, is it?
The big box labeled “Control Section” in the middle of
the diagram will be examined in detail later. It
controls all of the ‘set’ and ‘enable’ bits in the CPU
and the RAM. The boxes with the question marks will be
explained immediately following this chapter. For now,
we are going to look at where the bytes can go within
the CPU.
R0, R1, R2, and R3 are registers that are used as short-
term storage for bytes that are needed in the CPU. Their
inputs and outputs are connected to the bus. They can be
used for many different purposes, so they are known as
“general purpose registers.”
The register called ‘TMP’ means temporary. Its input
comes from the bus, and its output goes downward to one
and then the other of the question marked boxes. TMP has
a ‘set’ bit, but no ‘enable’ bit because we never have a
reason to turn its output off.
The last register is called the accumulator, or ACC for
short. This is a word that comes from the days of the
old mechanical adding machines (pre 1970.) I guess it
meant that as you added up a column of numbers, it would
‘accumulate’ a running total. In a computer, it just
means that it temporarily stores a byte that comes from
that big question marked box. The output of ACC is then
connected to our old friend, the bus, so it can be sent
somewhere else as needed.
The registers in the CPU and RAM are the places where
the contents of bytes come from and go to as the
computer operates. All movements involve enabling one
register onto the bus, and setting the contents of the
bus into another register.
Now we will look at what is in those boxes with the
question marks.

83

More Gates
We have used NAND, AND and NOT gates so far. There are
two more combination gates that we need to define. The
first is built like this:

All it does is to NOT the two inputs to one of our good
old NAND gates. Here is the chart for it, showing the
intermediate wires so it is easy to follow.

a b c d e

0 0 1 1 0

0 1 1 0 1

1 0 0 1 1

1 1 0 0 1

In this case, when both inputs are off, the output is
off, but if either ‘a’ OR ‘b’ is on, or both, then the
output will be on. So it has another very simple name,
it is called the “OR gate.” Instead of drawing all the
parts, it has its own diagram shaped something like a
shield. The diagram and chart look like this:

a b c

0 0 0

0 1 1

84

1 0 1

1 1 1

Like the AND gate, you can build OR gates with more than
two inputs. Just add another OR gate in place of one of
the inputs, and you will then have three inputs, any one
of which will turn the output on. Also like the AND
gate, every time you add an input, the number of lines
on the chart will double. With the OR gate, only the
line that has all inputs off will have the output off.
All the rest of the lines will show the output being on.

The last combination gate we need here takes five gates
to make, but what it ultimately does is quite simple.
Similar to the OR gate, the output is on when either
input is on, but in this version, the output goes back
off if both inputs are on. So it is called an Exclusive
OR gate, or XOR gate for short. The output is on if
either OR the other input is on, exclusively. Only if it
is OR, not if it is AND. Another way to look it at it is
the output comes on if one and only one input is on.
Still another way to look at it is the output is off if
the inputs are the same, and on if the inputs are
different.

a b c d e f g

0 0 1 1 1 1 0

85

0 1 1 0 0 1 1

1 0 0 1 1 0 1

1 1 0 0 1 1 0

The simplified diagram looks similar to an OR gate, but
it has a double curved line on the input side. The
diagram and chart look like this:

a b c

0 0 0

0 1 1

1 0 1

1 1 0

We now have four kinds of gates that take two inputs and
make one output. They are NAND, AND, OR and XOR. Here is
a chart that makes it pretty simple:

86

For the four possible input combinations of ‘a’ and ‘b,’
each type of gate has its own set of output states, and
the names of the gates can help you remember which is
which.
In spite of the fact that everything in the computer is
made out of NAND gates, we are not going to be using any
NAND gates by themselves in this computer! Now that we
have used them to build AND, OR, XOR and NOT gates, and
the memory bit, we are done with the NAND gate. Thank
you Mr. NAND gate, bye bye for now.

87

Messing with Bytes
Individual gates operate on bits. Two bits in, one bit
out. But the RAM stores and retrieves a byte at a time.
And the bus moves a byte at a time. Here in the CPU, we
want to be able to work on a whole byte at one time. We
want some ‘gates’ that affect an entire byte. In the
chapter on the bus, we saw how the contents of a byte
can be copied from one register to another. This is
usually referred to as moving a byte. Now we are going
to see some variations on this.
First we will see three ways that we can change the
contents of a byte as it moves from one register to
another. Second, we will see four ways that we can take
the contents of two bytes, and have them interact with
each other to create the contents for a third byte.
These are all of the things that computers actually do
to bytes. All things ultimately come down to these seven
operations.

88

The Left and Right Shifters
The shifter is very easy to build. It doesn’t use any
gates at all, it just wires up the bus a bit oddly. It
is done like this:

This shows two registers connected by a right shifter.
The shifter is just the wires between the two registers.
When the ‘e’ bit of R1 is turned on, and the ‘s’ bit of
R2 is turned on and then off, all of the bits in R1 are
copied into R2, but they are shifted over one position.
The one at the bottom (shift out) can be connected to
some other bit in the computer, but is often connected
back to the one on the top (shift in) and when that is
done, the rightmost bit wraps around to the leftmost bit
at the other end of the byte.
A right shifter will change 0100 0010, to 0010 0001.
If ‘shift out’ is connected to ‘shift in,’ a right shift
will change 0001 1001 to 1000 1100
A left shifter will change 0100 0010 to 1000 0100. The

89

left shifter is wired up like so:

Once again, we have bus versions of these drawings. They
each have an ‘i’ and ‘o’ bus, and also one input and
output bit, like this:

Now of what use is this? The minds of programmers have
come up with all sorts of things, but here is an
interesting one. Assume that you are using the binary
number code. You have the number 0000 0110 in R1. That
comes out to the decimal number 6. Now shift that code
left into R2. R2 will then be 0000 1100. This comes out
to the decimal number 12. What do you know, we have just

90

multiplied the number by 2. This is the basis of how
multiplication is done in our computer. How you multiply
by something other than 2 will be seen later, but this
is how simple it is, just shift the bits. This is
similar to something we do with decimal numbers. If you
want to multiply something by ten, you just add a zero
to the right side, effectively shifting each digit left
one position. In the binary system, this only results in
multiplying by two because two is what the system is
based on.
So that’s the shifter, no gates at all.

91

The NOTter
This device connects two registers with eight NOT gates.
Each bit will be changed to its opposite. If you start
with 0110 1000, you will end up with 1001 0111. This
operation is used for many purposes, the first being in
some arithmetic functions. We will see exactly how this
works soon after we describe a few other things. Another
name for a NOT gate is an “inverter,” because it makes
the opposite of what you give it, turns it up side down,
or inverts it.

Since the input and the output are both eight wires,
we’ll simplify by using our bus type picture.

92

93

The ANDer
The ANDer takes two input bytes, and ANDs each bit of
those two into a third byte. As you can see, the eight
bits of the ‘a’ input bus are connected to the upper
side of eight AND gates. The eight bits of the ‘b’ input
bus are connected to the lower side of the same eight
AND gates. The outputs of the eight AND gates form the
bus output ‘c’ of this assembly. With this, we can AND
two bytes together to form a third byte.

There are many uses for this. For example, you can make
sure that an ASCII letter code is uppercase. If you have
the code for the letter ‘e’ in R0, 0110 0101, you could

94

put the bit pattern 1101 1111 into R1 and then AND R1
and R0 and put the answer back into R0. All of the bits
that were on in R0 will be copied back to R0 except for
the third bit. Whether the third bit had been on or off
before, it will now be off. R0 will now contain 0100
0101, the ASCII code for ‘E.’ This works for all ASCII
letter codes because of the way ASCII is designed.
Here is a simpler bus type picture for the ANDer.

95

The ORer
The ORer takes two input bytes, and ORs each bit of
those two into a third byte. As you can see, the eight
bits of the ‘a’ input bus are connected to the upper
side of eight OR gates. The eight bits of the ‘b’ input
bus are connected to the lower side of the same eight OR
gates. The outputs of the eight OR gates are the bus
output ‘c’ of this assembly. With this, we can OR two
bytes together to form a third byte.

What is the use of this? There are many, but here is one
of them. Say you have the ASCII code for the letter ‘E’
in R0, 0100 0101. If you want to make this letter be

96

lowercase, you could put the bit pattern 0010 0000 into
R1 and then OR R0 and R1 and put the answer back into
R0. What will happen? All of the bits of R0 will be
copied back into R0 as they were except the third bit
will now be on no matter what it had been. R0 will now
be 0110 0101, the ASCII code for ‘e.’ This will work no
matter what ASCII letter code was in R0 because of the
way ASCII was designed.
Here is a simpler bus type picture for the ORer.

97

The Exclusive ORer
The XORer takes two input bytes, and XORs each bit of
those two into a third byte. As you can see, the eight
bits of the ‘a’ input bus are connected to the upper
side of eight XOR gates. The eight bits of the ‘b’ input
bus are connected to the lower side of the same eight
XOR gates. The outputs of the eight XOR gates are the
bus output ‘c’ of this assembly. With this, we can XOR
two bytes together to form a third byte.

What is the use of this? Again, imaginative people have
come up with many of uses. But here is one of them. Say
you have one code in R1 and another code in R2. You want

98

to find out if those two codes are the same. So you XOR
R1 and R2 into R1. If R1 and R2 contained the same
patterns, then R1 will now be all zeros. It doesn’t
matter what pattern of 0s and 1s was in R1, if R2
contained the same pattern, after an XOR, R1 will be all
zeros.
Since both of the inputs and the output are all eight
wires, we’ll simplify by using our bus type picture.

99

The Adder
This is a combination of gates that is surprisingly
simple considering what it does. In our binary number
system, we have numbers in the range of 0 to 255
represented in a byte. If you think about how addition
is done with two of our regular decimal numbers, you
start by adding the two numbers in the right column.
Since the two numbers could each be anywhere from 0 to
9, the sum of these two will be somewhere from 0 to 18.
If the answer is anywhere from 0 to 9, you write it down
below the two numbers. If the answer is from 10 to 18,
you write down the right digit, and carry the 1 to add
to the next column to the left.

 2 5
+4 +7
 6 12

In the binary number system, it is actually much
simpler. If you do the same type of addition in binary,
the two numbers in the right column can each only be 0
or 1. Thus the only possible answers for adding the
right column of two binary numbers will be 0, 1 or 10
(zero, one or two). If you add 0+0, you get 0, 1+0 or
0+1 you get 1, 1+1 you get 0 in the right column, and
carry 1 to the column to the left.

 1 1
+0 +1
 1 10

The gates we have described can easily do this. An XOR
of the two bits will tell us what the right column
answer should be, and an AND of the two bits will tell
us whether we need to carry a 1 to the column on the
left. If one bit is on, and the other one is off, that
is, we are adding a 1 and a 0, the answer for the right
column will be 1. If both numbers are 1, or both numbers
are 0, the right column will be 0. The AND gate turns on
only in the case where both input numbers are 1.

100

So we have added the right column easily. Now we want to
add the next column to the left. Should be the same,
right? There are two bits that could be 0 or 1, but this
time we also have the possibility of a carry from the
previous column. So it’s not the same, this time we are
really adding three numbers, the two bits in this
column, plus the possible carry from the previous
column.

Carry-> 0 1 0 1 1

 00 01 10 011

 +01 +01 +01 +011
 01 10 11 110

When adding three bits, the possible answers are 0, 1,
10 or 11 (zero, one, two or three.) It is more complex,
but not impossible. Here is the combination that does
it:

101

The left XOR tells us if ‘a’ and ‘b’ are different. If
they are, and ‘carry in’ is off, or if ‘a’ and ‘b’ are
the same and ‘carry in’ is on, then the right XOR will
generate 1 as the sum for the current column. The lower
AND gate will turn on ‘carry out’ if both inputs are on.
The upper AND gate will turn on ‘carry out’ if
‘carry in’ and one of the inputs are on. This is the
simplicity of how computers do addition! Now that we see
that it works, we can make a simpler picture of it:

To make an adder that adds two bytes together, we need a
one bit adder for each bit of the bytes, with the carry
output of each bit connected to the carry input of the
next. Notice that every bit has a carry in, even the
first bit (the right column.) This is used when we want
to add numbers that can be larger than 255.

102

And the simplified picture of it with bus inputs and
output:

103

The carry output bit of the leftmost (top) column will
turn on if the sum of the two numbers is greater than
255, and this bit will be used elsewhere in the
computer.
This is how computers do addition, just five gates per
bit, and the computer can do arithmetic!

104

The Comparator and Zero
All of the things we have described above take one or
two bytes as input, and generate one byte of output. The
shifters and the adder also generate one extra bit of
output that is related to their output byte. The
comparator only generates two bits of output, not a
whole byte.
The comparator is actually built right into the XORer
because it can make use of the gates that are already
there. The XORer generates its byte of output, and the
comparator generates its two bits. These two functions
are not really related to each other, it just happens to
be easy to build it this way.
What we want the comparator to do, is to find out
whether the two bytes on the input bus are exactly
equal, and if not, whether the one on the ‘a’ bus is
larger according to the binary number system.
The equal thing is pretty simple. XOR gates turn off
when the inputs are the same, so if all of the XOR gates
are off, then the inputs are equal.
To determine the larger of two binary numbers is a
little trickier. You have to start with the two top
bits, and if one is on and the other is off, then the
one that is on is the larger number. If they are the
same, then you have to check the next lower pair of bits
etc., until you find a pair where they are different.
But once you do find a pair that are different, you
don’t want to check any more bits. For example,
0010 0000 (32) is larger than 0001 1111 (31.) The first
two bits are the same in both bytes. The third bit is on
in the first byte and off in the second, and therefore
the first byte is larger. Although the rest of the bits
are on in the second byte, their total is less than the
one bit that is on in the first byte.
That is what we want to have happen, and it takes five
gates times eight positions to accomplish it. Since we
are starting with the XORer, we will add four more gates
to each position as shown in this diagram. Remember in
the adder, we had a carry bit that passed from the
lowest bit position up through to the highest bit. In

105

the comparator, we have two bits that pass down from the
highest bit position to the lowest.
Here is one bit of the comparator. You can see the
original XOR gate, labeled ‘1’, connected up to one bit
of each input bus on the left, and generating one bit
for the output bus on the right.

If the output of gate 1 is on, that means that ‘a’ and
‘b’ are different, or unequal. We add gate 2, which will
turn on when ‘a’ and ‘b’ are equal.
If gate 2 is on at every position, then gate 3 will be
on at every position as well, and the bit that comes out
of the bottom tells us that the two input bytes are
equal.
Gate 4 turns on if three things are true. 1) Bits ‘a’
and ‘b’ are different. 2) Bit ‘a’ is the one that is on.
3) All bits above this point have been equal. When gate
4 turns on, it turns gate 5 on, and that turns on every
other gate 5 below this point, and therefore the ‘a

106

larger’ output of the comparator.
When byte ‘b’ is the larger one, both the ‘equal’ bit
and the ‘a larger’ bit will be off.
You stack up eight of these bit comparators like the
following diagram, with a ‘1’ and ‘0’ connected to the
top one to get it started. You still have the XOR
function coming out at ‘c,’ and now the two comparator
bits at the bottom.

Simplifying again, we will go back to the bus-type XOR
diagram, and just add the two new output bits of the
comparator.

107

There is one more thing that we are going to need in our
computer that gives us another bit of information. This
is a simple gate combination that takes a whole byte as
input, and generates only one bit as output. The output
bit turns on when all of the bits in the byte are off.
In other words, the output bit tells us when the
contents of the byte is all zeros.

It is simply an eight input OR gate and a NOT gate. When
any of the inputs to the OR gate are on, its output will
be on, and the output of the NOT gate will be off. Only
when all eight inputs of the OR are off, and its output
is therefore off, will the output of the NOT gate be on.
The simpler bus representation is shown on the right.

108

Logic
The subject of thinking has been the object of much
study and speculation through the ages. There was a man
in ancient Greece named Aristotle who did a lot of work
in this area. He must have met a lot of illogical people
in his life, because he invented a subject that was
supposed to help people think more sensibly.
One of his ideas was that if you have two facts, you may
be able to derive a third fact from the first two. In
school they sometimes give tests that present two facts,
then they give you a third fact and ask whether the
third fact is ‘logical’ based on the first two. You may
remember questions such as:
If Joe is older than Bill,
And Fred is older than Joe,
Then Fred is older than Bill. True or False?
Or
Children like candy.
Jane is a child.
Therefore Jane likes candy. True or False?
Aristotle called his study of this sort of thing
‘Logic.’
The only relevance this has to our discussion of
computers is this word ‘logic.’ Aristotle’s logic
involved two facts making a third fact. Many of our
computer parts, such as AND gates, take two bits and
make a third bit, or eight AND gates take two bytes and
make a third byte. And so, the things that these gates
do, has come to be known as logic. There may be AND
logic and OR logic and XOR logic, but the general term
for all of them is logic.
ANDing, ORing and XORing take two bytes to make a third,
so they fit this definition of logic pretty well.
Shifting and NOTing have also come to be known as logic
even though they only take one byte of input to generate
their output. The ADDer, although it is has two inputs
and is also very logical, somehow is not known to be in
the category of logic, it is in its own category,
arithmetic.

109

So all of the ways that we have described above of doing
things to bytes come under the heading of ‘arithmetic
and logic.’

110

The Arithmetic and Logic Unit
Now we have built seven different devices that can do
arithmetic or logic on bytes of data. We are going take
all seven of these devices, put them together in one
unit, and provide a method of selecting which one of
these devices we want to use at any given time. This is
called the “Arithmetic and Logic Unit,’ or “ALU” for
short.

111

112

All seven devices are connected to input ‘a,’ the
devices that have two inputs are also connected to input
‘b.’ All seven devices are connected to the inputs at
all times, but each output is attached to one of those
enablers. The wires that turn the enablers on, are
connected to the outputs of a decoder, thus only one
enabler can be on at a given time. Seven of the
decoder’s outputs enable a single device to continue on
to the common output, ‘c.’ The eighth output of the
decoder is used when you don’t want to select any device
at all. The three input wires to the decoder are labeled
‘op,’ because they choose the desired ‘operation.’
The one little complication here is the carry bits from
the adder, and the ‘shift in’ and ‘shift out’ bits from
the shifters. These are used in very similar ways, and
so from here on out we will refer to all of them as
carry bits. The adder and both shifters take carry as an
input, and generate carry as an output. So the three
carry inputs are connected to a single ALU input, and
one of the three outputs is selected along with the bus
output of its device. Look at the rightmost output of
the 3X8 decoder above, and see that it enables both the
adder bus and the adder carry bit.
What do we have here? It is a box that has two bus
inputs, one bus output and four other bits in and four
other bits out. Three of the input bits select which
“operation” will take place between the input and output
buses. Again, now that we know what’s in it and how it
works, we don’t need to show all of its parts. Here is a
simplified way to draw it:

Notice that the three single bit inputs labeled “op,”

113

above, can have eight different combinations. Seven of
those combinations select one of the devices described
previously. The eighth combination does not select any
output byte, but the ‘a larger’ and ‘equal’ bits still
work, as they do at all times, so this is the code to
choose if you only want to do a comparison.
The combination of bits at ‘op’ mean something. That
sounds like another code. Yes, here is a three-bit code
that we will make use of soon.
000 ADD Add
001 SHR Shift Right
010 SHL Shift Left
011 NOT Not
100 AND And
101 OR Or
110 XOR Exclusive OR
111 CMP Compare

The Arithmetic and Logic Unit is the very center, the
heart of the computer. This is where all of the action
happens. I’ll bet this is a lot less complicated than
you thought.

114

More of the Processor
There is one more little device we need. It is a very
simple thing, it has a bus input, a bus output and one
other input bit. It is very similar to an enabler. Seven
of the bits go through AND gates, and one of them goes
through an OR gate. The single bit input determines what
happens when a byte tries to pass through this device.
When the ‘bus 1’ bit is off, all of the bits of the
input bus pass through to the output bus unchanged. When
the ‘bus 1’ bit is on, the input byte is ignored and the
output byte will be 0000 0001, which is the number 1 in
binary. We will call this device a ‘bus 1’ because it
will place the number 1 on a bus when we need it.

Now we can put this ‘bus 1’ and the ALU into the CPU. We
will change where the wires go in and out of the ALU so
it fits our diagram better. The bus inputs come in the
top, the bus output comes out the bottom and all of the
input and output bits are on the right.

115

The output of the ALU is connected to ACC. ACC receives,
and temporarily stores, the result of the most recent
ALU operation. The output of ACC is then connected to
the bus, so its contents can be sent somewhere else as
needed.
When we want to do a one input ALU operation, we have to
set the three ‘op’ bits of the ALU to the desired
operation, enable the register we want onto the bus, and
set the answer into ACC.
For a two input ALU operation, there are two steps.
First we enable one of the registers onto the bus and
set it into TMP. Then we enable the second register onto
the bus, choose the ALU operation, and set the answer
into ACC.
As you can see, we can now move bytes of data to and

116

from RAM, to and from the Registers, through the ALU to
ACC, and from there, into a register or RAM if we turn
the appropriate enable and set bits on and off at the
right time. This is what happens inside of computers.
That’s not so complicated, is it?
There is only one thing missing here, and that has to do
with all of these control bits on the registers, ALU and
RAM. The RAM has three control bits, one to set MAR, one
to set the currently selected byte in, one to enable the
currently selected byte out. Each of the registers, R0,
R1, R2, R3 and ACC have a set and an enable bit, TMP
only has a set bit, bus 1 has a control bit, and the ALU
has those three ‘op’ bits that select the desired
operation.
We need something that will turn all of these control
bits on and off at the appropriate times so we can do
something that is useful. Now it is time to look into
that box labeled ‘Control Section.’

117

The Clock
We need to turn the appropriate control bits on and off
at the appropriate times. We will look at the
appropriate bits later, first we will look at the
appropriate times.
Here is a new kind of drawing, we will call it a graph.
It shows how one bit changes over time. Time starts on
the left and marches forward to the right. The line on
the graph has two possible positions, up means the bit
is on, and down means the bit is off.

This graph shows bit ‘X’ going on and off, on and off
regularly. There could be a time scale on the bottom to
show how fast this is happening. If the whole width of
the page represented one second, then bit ‘X’ would be
going on and off about eight times per second. But we
won’t need a time scale in these graphs, as we will only
be concerned with the relative timing between two or
more bits. The speed in an actual computer will be very
fast, such as the bit going on and off a billion times
per second.
When something repeats some action regularly, one of
those actions, individually, is called a cycle. The
graph above shows about eight cycles. You can say that
from one time the bit turns on to the next time the bit
turns on is a cycle, or you can say that from the middle
of the off time to the middle of the next off time is
the cycle, as long as the cycle starts at one point in
time when the bit is at some stage of its activity, and
continues until the bit gets back to the same stage of
the activity again. The word ‘Cycle’ comes from the word
‘circle,’ so when the bit comes full circle, that is one
cycle.
There was a scientist who lived in Germany in the 1800’s
who did some of the early research that led up to radio.
His name was Heinrich Hertz, and among other things, he

118

studied electricity that was going on and off very
quickly. Some decades after his death, it was decided to
use his name to describe how fast electricity was going
on and off, or how many cycles occurred per second.
Thus, one Hertz (or Hz for short) means that the
electricity is going on and off once per second. 500 Hz
means 500 times per second. For faster speeds we run
into those ancient languages again, and one thousand
times per second is called a kilohertz or kHz for short.
Going on and off a million times per second is called a
megahertz, or mHz for short, and a billion times is
called a gigahertz, or gHz for short.
Every computer has one special bit. All other bits in a
computer come from somewhere, they are set on and off by
other bits or switches. This one special bit turns on
and off all by itself. But there is nothing mysterious
about it, it just goes on and off very regularly and
very quickly. This special bit is built very simply,
like this:

This seems a silly thing to do. Just connect a NOT
gate’s output back to its input? What will this do?
Well, if you start with the output on, the electricity
travels back to the input, where it enters the gate
which turns the output off, which travels back to the
input which turns the output on. Yes, this gate will
just go on and off as quickly as possible. This will
actually be too fast to be used for anything, and so it
can be slowed down just by lengthening the wire that
makes the loop.

The simplified diagram shows this to be the one special
bit in the computer that has an output but does not have
any inputs.

119

This bit has a name. It is called the clock. Now we
usually think of a clock as a thing with a dial and
hands, or some numbers on a screen, and we have seen
such clocks in the corner of a computer screen.
Unfortunately, someone named this type of bit, a clock,
and the name stuck with the computer pioneers. It could
have been called the drumbeat or the pacesetter or the
heart or the rhythm section, but they called it a clock.
That is what we will mean when we say clock throughout
the rest of this book. I guess it’s a clock that ticks,
but doesn’t have a dial. If we want to talk about the
type of clock that tells you what time it is, we will
call it a ‘time of day clock,’ or ‘TOD clock’ for short.
But the word ‘clock’ will mean this type of bit.
How quickly does this clock go on and off? These days it
is well over a billion times per second, or several
gigahertz. This is one of the main characteristics that
computer companies tell you about to show you how great
their computers are. When you see computers for sale,
the speed that they advertise is the speed of its clock.
The faster a computer is, the more expensive it is,
because it can do more things in one second. It is the
speed of this single bit going on and off that sets the
tempo for the whole computer.
To move data via the bus, we need first to enable the
output of one and only one register, so that its
electricity can travel through the bus to the inputs of
other registers. Then, while the data is on the bus, we
want to turn the set bit of the destination register on
and off. Since the destination register captures the
state of the bus at the instant that the set bit goes
off, we want to make sure that it goes off before we
turn off the enable bit at the first register to make
sure that there are no problems.
Let us first attach a length of wire to the output of
the clock. This will delay the electricity slightly. We
want it delayed about one quarter of a cycle.

120

If we show the original clock output (clk) and the
delayed clock output (clk d) on a graph, they will look
like this:

Now we’re going to do something fairly simple. We will
take the original clock and the delayed clock, and both
AND them and OR them to create two new bits, like so:

One of the new bits is on when either ‘clk’ or ‘clk d’
are on, and the other new bit is on only when both ‘clk’
and ‘clk d’ are on. The graph of the inputs and outputs
of the AND and OR gates is shown here. They are both
still going on and off regularly, but one of them is on
for longer than it is off, and the other one is off for
longer than it is on. The on time of the second is right
in the middle of the on time of the first.

121

Notice that they have names, ‘clk e,’ which stands for
clock enable, and ‘clk s,’ which stands for clock set.
And what do you know, these two bits have the perfect
timing to move a byte of data from one register, across
the bus, and into another register. Just connect ‘clk e’
to the enable bit of the ‘from’ register, and connect
‘clk s’ to the set bit of the ‘to’ register.
Here is a single on/off cycle of these two bits.

If you look at the timing here, this meets our
requirements of needing to first enable the output of a
register, and then, after the data has a little time to
travel down the bus, to turn the set bit of the
destination register on and off before turning the
enable bit off at the first register.
Of course, these clock bits cannot just be connected
directly to every register. There must be other gates in
between, that only allow one register to get an enable
at any one time, and only the desired register(s) to
receive a set. But all enables and sets ultimately come
from these two bits because they have the right timing.

122

Since we will use clk, clk e and clk s throughout the
computer, this is the diagram we will use to show the
clock:

123

Doing Something Useful
Let’s say that we want to do something useful, like
adding one number to another number. We have a number in
R0, and there is another number in R1 that we want to
add to the number in R0. The processor we have built so
far has all of the connections to do this addition, but
it will take more than one clock cycle to do it.
In the first clock cycle, we can enable R1 onto the bus,
and set it into TMP.
In the second cycle we can enable R0 onto the bus, set
the ALU to ADD, and set the answer into ACC.
In the third cycle, we can enable ACC onto the bus, and
set it into R0.
We now have the old value of R0, plus R1 in R0. Perhaps
this doesn’t seem very useful, but it is one of the kind
of small steps that computers do. Many such small steps
make the computer seem to be able to do very complex
things.
Thus we see that for the processor to do something
useful, it takes several steps. It needs to be able to
do actions in a sequence. We need another piece inside
this ‘Control Section.’

124

Step by Step
This chapter introduces a new part called the “Stepper.”
First, we will describe the completed stepper, showing
exactly what it does. After that, we will see exactly
how it is built. If you happen to trust your author
enough to believe that such a stepper can be built out
of gates, and you’re in such a hurry that you want to
skip the ‘how it is built’ part of the chapter, you
might still understand the computer.
Here is a complete stepper.

It has two inputs. One is called ‘clk,’ because this is
where we connect a bit that is going on and off, such as
our original clock bit. The other input is called
‘reset,’ which is used to return the stepper back to
step one. For outputs, it has a number of bits, each of
which will come on for one complete clock cycle, and
then turn off, one after the other. The output labeled
‘Step 1’ turns on for one clock cycle, then ‘Step 2’ for
the next clock cycle, etc. A stepper can be built to
have as many steps as needed for any particular task you
want to do. In the case of this computer that we are
building, seven steps are sufficient. When the last step
(7) turns on, it stays on, and the stepper doesn’t do
anything else until the reset bit is turned on briefly,
at which time the steps start over again beginning with
‘Step 1.’
Here is a graph of the input ‘clk’ bit, and the outputs
of a seven-step stepper.

125

Here is how the stepper is built. It is done using some
of the same memory bits that we used to make registers,
but they are arranged very differently. We are not going
to store anything in these bits, we are going to use
them to create a series of steps.
The stepper consists of several memory bits connected in
a string, with the output of one connected to the input
of the next. Here is a diagram that shows most of the
stepper:

126

First look at the series of ‘M’ memory bits just like
the ones that we used earlier in the book. In this
picture, there are twelve of them connected together,
with the output of one connected to the input of the
next, all the way down the line. The input to the first
bit on the left is connected to a place where the
electricity is always on, so when the set bit of that
‘M’ comes on, that ‘M’ will receive that on state, and
pass it through to its output.
If you look at the set bits of these ‘M’s, you will see
that the set bits of the even numbered ‘M’s are
connected to clk, and the set bits of the odd numbered
‘M’s are connected to the same clock after it goes
through a NOT gate. This new bit that is made by passing
clk through a NOT gate can be called ‘not clk,’ and we
can show both on this graph:

So what will happen with this bunch of gates? If you
assume that all of the ‘M’s start in the off state, and
then start ‘clk’ “ticking,” here is what it will do.
The first time ‘clk’ comes on, nothing will happen,
because the set bit of the first ‘M’ is connected to
‘not clk,’ which is off when ‘clk’ is on. When ‘clk’
goes off, ‘not clk’ turns on, and the first ‘M’ will
come on, but nothing will happen at the second ‘M’

127

because its ‘set’ bit is connected to ‘clk,’ which is
now off. When ‘clk’ comes back on, the second ‘M’ will
now come on. As the clock ticks, the ‘on’ that enters
the first memory bit will step down the line, one bit
for each time the clock goes on, and one bit for each
time the clock goes off. Thus two bits come on for each
clock cycle.
Now, turning to the full stepper diagram below, step 1
comes from a NOT gate connected to the output of the
second ‘M.’ Since all ‘M’s start off, step 1 will be on
until the second ‘M’ comes on, at which time step 1 will
be over. For the remaining steps, each one will last
from the time its left side ‘M’ turns on until the time
its right side ‘M’ turns on. The AND gates for steps 2-6
have both inputs on when the left ‘M’ is on, and the
right ‘M’ is off. If we connect the output of one ‘M’
and the NOT of the output of an ‘M’ two spaces farther
on to an AND gate, its output will be on for one
complete clock cycle. Each one comes on when its left
input has come on, but its right input has not yet come
on. This gives us a series of bits that each come on for
one clock cycle and then turn off.
The only thing missing here is that the ‘M’ bits come on
and stay on. Once they are all on, there is no more
action despite the clock’s continued ticking. So we need
a way to reset them all off so we can start over again.
We have to have a way to turn off the input to the first
‘M,’ and then turn on all of the set bits at the same
time. When that happens, the ‘off’ at the input to the
first ‘M’ will travel through all of the ‘M’s as fast as
it can go. We will add a new input called ‘reset,’ which
will accomplish these things.

128

When we turn ‘reset’ on, it makes the input to the first
‘M’ bit a zero, and turns on all of the ‘sets’ at the
same time so that the zero can travel down the line of
‘M’s very quickly. Reset is also ORed with step 1 so
that step 1 turns on immediately. Now all of the bits
are off, and we have started another sequence. Reset
only needs to be turned on for a fraction of one clock
cycle.
To recap, this is a stepper. It has two inputs: a clock
and a reset. For outputs, it has a number of bits, each
of which will come on for one clock cycle. We can
actually make this as long as needed, but for the
purposes of this book, a seven stage stepper will be
sufficient. There will be only one stepper in our
computer, we will represent it with this simplified
diagram.

We have relocated the Reset bit to the right side of the
diagram, and connected it to the last step (7,) so that
the stepper will automatically reset itself. Step 7 will
not be on for very long, however, because it shuts

129

itself off as soon as the zero can get through the
string of ‘M’s. This means that step 7 will not last
long enough to be used for one of our data transfers
over the bus. All of the things we want to accomplish
will take place in steps 1 through 6.

130

Everything’s Under Control
With our clock, we have a drumbeat to make things go. It
has a basic output, and two more that are designed to
facilitate the movement of the contents of registers
from one to another. With the stepper, we have a series
of bits that come on one after another, each for one
clock cycle.
Remember the diagram of the CPU we saw a few chapters
back? It showed the bus, the ALU, six registers and even
the other half of the computer (the RAM) all connected
up pretty neatly. At least all of the bus connections
were there. But all the registers, the RAM, the Bus 1
and the ALU are controlled by wires that come from that
mysterious box labeled ‘Control Section’ that we know
nothing about yet. Now it is time to look inside that
box.

131

This drawing is the beginning of the control section of
the computer. At the top are the clock and the stepper.
Then all of the control bits from the registers and RAM
have been brought here together in one place, with all
of the ‘enable’ bits on the left, and all of the ‘set’
bits on the right. Then we have connected the output of
an AND gate to each ‘enable’ and each ‘set’ bit. One
input of each AND gate is connected to either ‘clk e’
for the ‘enables’ on the left, or ‘clk s’ for the ‘sets’
on the right. Thus, if we use the other input of those
AND gates to select any of those registers, the ‘enable’
bit of all of the items on the left will never be turned
on except during ‘clk e’ time. Similarly on the right,
the ‘set’ bit of any of those registers will only be
turned on during ‘clk s’ time.
This is sort of a switchboard. Everything we need to

132

make the computer do something is right here in one
place. All we need to do is connect some control bits to
some steps in an intelligent manner, and something
useful will happen.

133

Doing Something Useful, Revisited
Now that we have the beginning of our control section,
we can just add a few wires, and we will be able to do
the simple addition we postulated earlier, that of
adding R1 to R0.

All we have to do to ‘do something useful,’ like adding
R1 to R0, is to connect a few wires in the middle, as
shown in this diagram with steps four, five and six.
Each step causes something to happen to some of the
parts that are shown in the CPU diagram. Each step is
connected to one ‘enable’ on the left, and one ‘set’ on
the right, and therefore causes one part to connect its
output to the bus, and another part to save what now
appears at its input. Step four is wired to R1 ‘enable’

134

and TMP ‘set.’ Step five is wired to R0 ‘enable,’ and
ACC ‘set.’ The ALU ‘op’ bits do not need any connections
since the ‘op’ code for ADD is 000. Step six is wired to
ACC ‘enable’ and R0 ‘set.’
During step four, R1 is enabled and TMP is set. The
contents of R1 travel across the bus (in the CPU
diagram) and are captured by TMP.
During step five, R0 is enabled and ACC is set. If we
wanted to do something other than ADD, this is the step
where we would turn on the appropriate ALU ‘op’ code
bits.
During step six, ACC is enabled and R0 is set.
Here is a graph of the steps, showing when each register
gets enabled and set.

135

R0 now contains the sum of the original contents of R0
plus R1.
This is how the computer makes things happen in a
tightly controlled ballet of bits and bytes moving
around inside the machine.
In step seven, the stepper is reset to step 1, where the
process repeats. Of course it is not very useful to just

136

do this addition over and over again, even if you start
out with the number 1 in both R0 and R1, R0 will get up
to 255 pretty quickly.
If the clock in our computer ticks one billion times
every second, otherwise known as one gigahertz, and even
if we use multiple clock cycles to “do something useful”
like this, that means that the computer can do something
like this hundreds of millions of times in one second.
But we don’t want to just add R1 to R0 over and over
again.
Perhaps now that we have added R1 to R0, we want to
store that new number to a particular address in RAM,
and R2 happens to have that address in it. Again, our
processor has all of the connections necessary to do
this, and again it will take more than one clock cycle
to do it. In step 4, we can move R2 across the bus to
MAR. In step 5 we can move R0 across the bus to RAM.
That’s all that is needed, just two clock cycles and
we’re done.
The wiring for this operation is simpler than the other
one, just two enables and two sets.

137

There are many combinations of things that we can do
with the RAM, the six registers and the ALU. We could
get a byte from RAM and move it to any of the four
registers, we could move any one or two of the registers
through the ALU and ADD them, AND them, OR them, XOR
them, etc.
We need a way for our CPU to do one thing one time, and
a different thing the next time. The control section
needs something to tell it what to do in each sequence.

138

What’s Next?
Now here’s a scary idea. Imagine that the job that an
employee does at a fast food restaurant gets broken down
into its individual elements. Walk to the counter, say
“May I take your order?” listen to the answer, press the
“cheeseburger” button on the cash register, etc. Now
lets say that there are 256 or less individual actions
involved in the job of working at such an establishment.
You could then invent a code that would associate one of
the states of a byte with each of the individual
activities of an employee. Then you could express the
sequence of an employee’s actions as a sequence of
bytes.
First we make up a code table. We write some codes down
the left side of the page. Then we decide what we want
those codes to mean, and write those meanings next to
the codes. Now we have a list of all of the possible
actions that an employee might take, and a code that
represents each one of them:

0000 0000 = Walk to the counter
0000 0001 = Say “May I take your order?”
0000 0010 = Listen to the answer
0000 0011 = Press the cheeseburger button
0000 0100 = Press the fries button.
0000 0101 = Press the milk button
0000 0110 = Press the total button
0000 0111 = Collect the money
0000 1000 = Give the customer the change
0000 1001 = Open an empty bag
0000 1010 = Place a cheeseburger in the bag
0000 1011 = Place fries in the bag
0000 1100 = Place a milk container in the bag
0000 1101 = Hand the bag to the customer
1000 0000 = Go to the step number in the right 6 bits.
0100 0000 = If “yes,” go to the step number in the right
6 bits.
0001 0000 = Go home.
Now if we want to describe how the employee is supposed
to act, we write a sequence of events that he should
follow:

139

1. 0000 0000 = Walk to the counter.
2. 0000 0001 = Say “May I take your order?”
3. 0100 0010 = If customer is not answering, go to
step 2.
4. 0000 0010 = Listen to the answer.
5. 0100 0111 = If customer doesn’t say cheeseburger,
go to step 7.
6. 0000 0011 = Press the cheeseburger button.
7. 0100 1001 = If customer does not say fries, go to
step 9.
8. 0000 0100 = Press the fries button.
9. 0100 1011 = If customer does not say milk, go to
step 11.
10. 0000 0101 = Press the milk button.
11. 0100 1101 = If the customer says that’s all, go to
step 13.
12. 1000 0100 = Go back to step 4.
13. 0000 0110 = Press the total button.
14. 0000 0111 = Collect the money.
15. 0000 1000 = Make change and give it to the customer.
16. 0000 1001 = Open an empty bag.
17. 0101 0011 = If order doesn’t include cheeseburger,
go to step 19.
18. 0000 1010 = Place a cheeseburger in the bag.
19. 0101 0110 = If order does not include fries, go to
step 22.
21. 0000 1011 = Place fries in the bag.
22. 0101 1000 = If order does not include milk, go to
step 24.
23. 0000 1100 = Place a milk container in the bag.
24. 0000 1101 = Hand the bag to the customer.
25. 0101 1011 = If it is quitting time, go to step 27.
26. 1000 0001 = Go back to step 1.
27. 0001 0000 = Go home.
I hope nobody ever tries to make the employees of a fast
food restaurant learn a code like this. People don’t
take well to being so mechanized. But maybe someone will
try to staff one of these restaurants with robots
someday. In that case, the robots would probably work
better using this sort of a code.
And our computer might be able to ‘understand’ a code
like this.

140

The First Great Invention
What we need is some way to do different operations from
one stepper sequence to the next. How could we have it
wired up one way for one sequence, and then a different
way for the next sequence? The answer, of course, is to
use more gates. The wiring for one operation can be
connected or disconnected with AND gates, and the wiring
for a different operation can be connected or
disconnected with some more AND gates. And there could
be a third and fourth possibility or more. As long as
only one of those operations is connected at one time,
this will work fine. Now we have several different
operations that can be done, but how do you select which
one will be done?
The title of this chapter is “The First Great
Invention,” so what is the invention? The invention is
that we will have a series of instructions in RAM that
will tell the CPU what to do. We need three things to
make this work.
The first part of the invention is, that we are going to
add another register to the CPU. This register will be
called the “Instruction Register,” or “IR” for short.
The bits from this register will “instruct” the CPU what
to do. The IR gets its input from the bus, and its
output goes into the control section of the CPU where
the bits select one of several possible operations.
The second part of the invention is another register in
the CPU called the “Instruction Address Register,” or
“IAR” for short. This register has its input and output
connected to the bus just like the general purpose
registers, but this one only has one purpose, and that
is to store the RAM address of the next instruction that
we want to move into the IR. If the IAR contains 0000
1010 (10 decimal,) then the next instruction that will
be moved to the IR is the byte residing at RAM address
ten.
The third part of the invention is some wiring in the
control section that uses the stepper to move the
desired “instruction” from RAM to the IR, add 1 to the
address in the IAR and do the action called for by the

141

instruction that has been put in the IR. When that
instruction is complete, the stepper starts over again,
but now the IAR has had 1 added to it, so when it gets
that instruction from RAM, it will be a different
instruction that was located at the following RAM
address.
The result of these three parts is a great invention.
This is what allows us to make the computer do many
different things. Our bus, ALU, RAM and registers make
many combinations possible. The contents of the IR will
determine what registers are sent to where, and what
kind of arithmetic or logic will be done upon them. All
we have to do is to place a series of bytes in RAM that
represent a series of things that we want to do, one
after another.
This series of bytes residing in RAM that the CPU is
going to make use of is called a “program.”
The basic thing that happens here is that the CPU
“fetches” an instruction from RAM, and then “executes”
the instruction. Then it fetches the next one and
executes it. This happens over and over and over,
millions or billions of times every second. This is the
simplicity of what a computer does. Someone puts a
program in RAM, and that program, if intelligently
designed, makes the computer do something that people
find useful.
The stepper in this computer has seven steps. The
purpose of step 7 is only to reset the stepper back to
step 1. So there are six steps during which the CPU does
small things. Each step lasts for one clock cycle. The
six steps taken as a whole is called an “Instruction
Cycle.” It takes six steps for the CPU to do all of the
actions necessary to fetch and execute one instruction.
If we assume that our clock ticks at one gigahertz, then
our computer will be able to execute 166,666,666
instructions every second.
Here is the picture of the CPU with the two new
registers added to it. There they are under the Control
Section, connected to the bus. The IAR has a ‘set’ and
‘enable,’ the IR only has a ‘set,’ just like TMP and MAR
because their outputs are not connected to the bus, so
we never need to turn them off.

142

Below is the wiring within the Control Section that does
the ‘fetch’ part of the instruction cycle. It uses the
first three steps of the stepper and is the same for all
types of instructions.

143

The stepper’s first three steps are shown here, and
result in ‘fetching’ the next ‘instruction’ from RAM.
Then the rest of the steps ‘execute’ the ‘instruction.’
Exactly what will be done in steps 4, 5 and 6, is
determined by the contents of the instruction that was
fetched. Then the stepper starts over, fetches the next
instruction, and executes it.
The bottom of this diagram includes the Instruction
Register. Notice that we have given numbers to the
individual bits of the IR, 0 at the left through 7 on
the right. We will be referring to the individual bits
soon.
Here are the details of exactly how steps 1, 2 and 3
result in fetching an instruction in our little
computer:

144

Step 1 is the most complicated because we actually
accomplish two things at the same time. The main thing
we want to do is to get the address in IAR over to MAR.
This is the address of the next instruction that we want
to fetch from RAM. If you look at the wire coming out of
step 1 of the stepper, you can see that two of the
places it is connected to are the ‘enable’ of IAR and
the ‘set’ of MAR. Thus, the contents of IAR will be
placed on the bus during ‘clk e’ and set into MAR during
‘clk s.’ Sometime during the instruction cycle, we need
to add 1 to the value in IAR, and since IAR is already
on the bus, we might as well do it now. If we don’t send
anything to the ALU’s ‘op’ bits, they will all be zero,
and since 000 is the code for ADD, the ALU will be doing
an ADD operation on whatever is on its two inputs, and
presenting the answer to ACC. One input comes from the
bus, which has IAR on it during this time. If we also
turn on the ‘bus 1’ bit during step 1, the other input
to the ALU will be a byte with the binary value of 1. If
we turn on the ‘set’ of ACC during ‘clk s,’ we will
capture the sum of IAR plus 1 in ACC. This just happens
to be the address of the instruction that we will want
to fetch after we are done with the current one!
Step 2 enables the currently selected byte in RAM onto
the bus, and sets it into IR. This is the instruction
that we will ‘execute’ in steps 4, 5 and 6 of this
instruction cycle. In the diagram, you can see that the
wire coming from step 2 is connected to the ‘enable’ of
RAM and the ‘set’ of IR.
In step 3, we need to finish updating IAR. We added 1 to
it in step 1, but the answer is still in ACC. It needs
to be moved to IAR before the beginning of the next
instruction cycle. So you can see the wire coming out of
step 3 is connected to ‘enable’ of ACC and ‘set’ of IAR.
By the time we get to step 4, the instruction has
already been moved from RAM to IR, and now steps 4, 5
and 6 can then do whatever is called for by the contents
of IR. When that operation is done and the stepper is
reset, the sequence will start over again, but now IAR
has had 1 added to it, so the instruction at the next
RAM address will be fetched and executed.
This idea of putting a series of instructions in RAM and

145

having the CPU execute them is a great invention.

146

Instructions
We now have this new register, called the Instruction
Register, which contains a byte that is going to tell
the Control Section what to do. The patterns that are
put into this register have a meaning. Sounds like
another code, and indeed, it is. This code will be
called the “Instruction Code.”
Since we are building this computer from scratch, we get
to invent our own instruction code. We will take the 256
different codes that can be put in the Instruction
Register, and decide what they will mean. Then we have
to design the wiring inside the control unit that will
make these instructions do what we said they would do.
Do you remember the binary number code? We said that it
was the closest thing to a ‘natural’ computer code
because it was based on the same method we use for our
normal number system. Then there was the ASCII code,
which was just invented by a bunch of people at a
meeting. There is nothing natural about ASCII at all, it
was just what those people decided it would be.
Now we have the Instruction Code, which will also be a
totally invented code - nothing natural about it. Many
different instruction codes have been invented for many
different types of computers. We will not study any of
them here, nor will you need to study any of them later,
unless you are going to go on to a highly technical
career where that is necessary. But all Instruction
Codes are similar, in that they are what make the
computer work. The only Instruction Code in this book
will be one that we invent for our simple computer. The
most important thing in inventing our Instruction Code,
will be how simple we can make the wiring that will make
the code work.
How many different instructions could there be? Since
the instruction register is a byte, there might be as
many as 256 different instructions. Fortunately, we will
only have nine types of instructions, and all 256
combinations will fall into one of these categories.
They are pretty easy to describe.
All instructions involve moving bytes across the bus.

147

The instructions will cause bytes to go to or from RAM,
to or from registers, and sometimes through the ALU. In
the following chapters, for each type of instruction, we
will look at the bits of that instruction, the gates and
wiring necessary to make it work, and another handy code
we can use to make writing programs easier.

148

The Arithmetic or Logic Instruction
This first type of instruction is the type that uses the
ALU like our ADD operation earlier. As you recall, the
ALU has eight things it can do, and for some of those
things it uses two bytes of input, for other things it
only uses one byte of input. And in seven of those
cases, it has one byte of output.
This type of instruction will choose one of the ALU
operations, and two registers. This is the most
versatile instruction that the computer can do. It
actually has 128 variations, since there are eight
operations, and four registers, and you get to choose
twice from the four registers. That is eight times four
times four, or 128 possible ways to use this
instruction. Thus this is not just one instruction, but
rather it is a whole class of instructions that all use
the same wiring to get the job done.
Here is the Instruction Code for the ALU instruction. If
the first bit in the Instruction Register is a 1, then
this is an ALU instruction. That’s the simplicity of it.
If the first bit is on, then the next three bits in the
instruction get sent to the ALU to tell it what to do,
the next two bits choose one of the registers that will
be used, and the last two bits choose the other register
that will be used.

149

Therefore, the ALU Instruction (1), to add (000)
Register 2 (10) and Register 3 (11), and place the
answer in Register 3, would be: 1000 1011. If you placed
this code (1000 1011) in RAM at address 10, and set the
IAR to 10, and started the computer, it would fetch the
1000 1011 from address 10, place it in IR, and then the
wiring in the control section would do the addition of
R2 and R3.
If you choose a one input operation, such as SHL, SHR or
NOT, the byte will come from the Reg A, go through the
ALU, and the answer will be placed in the Reg B. You can
choose to go from one register to another such as R1 to
R3, or choose to go from one register back into the same
one, such as R2 to R2. When you do the latter, the
original contents of the register will be replaced.
For two input operations, Reg A and Reg B will be sent

150

to the ALU, and the answer will be sent to Reg B. So
whatever was in Reg B, which was one of the inputs to
the operation, will be replaced by the answer. You can
also specify the same register for both inputs. This can
be useful, for instance, if you want to put all zeros in
Register 1, just XOR R1 with R1. No matter what is in R1
to begin with, all bit comparisons will be the same,
which makes the output of all bits zeros, which gets
placed back into R1.
The CMP operation takes two inputs and compares them to
see if they are equal, and if not, if the first one is
larger. But the CMP operation does not store its output
byte. It does not replace the contents of either input
byte.
The wiring in the Control unit for the ALU instruction
is pretty simple, but there is one extra thing that will
be used by many types of instructions that we need to
look at first. This has to do with the registers. In
“Doing Something Useful Revisited,” we used two
registers. To use them, we just connected the AND gate
for each register to the desired step of the stepper.
This was fine, but in the ALU instruction, and many
others, there are bits in the instruction register that
specify which register to use. Therefore we don’t want
to wire up directly to any one register, we need to be
able to connect to any of the registers, but let the
bits in the instruction choose exactly which one. Here
is the Control Section wiring that does it:

151

Look at the right side first. When we want to set a
general-purpose register, we connect the proper step to
this wire that we will call ‘Reg B.’ As you can see,
‘clk s’ is connected to all four AND gates. ‘Reg B’ is
also connected to all four AND gates. But these four AND
gates each have three inputs. The third input to each
AND gate comes from a 2x4 decoder. You remember that one
and only one output of a decoder is on at any given
time, so only one register will actually be selected to
have its ‘set’ bit turned on. The input to the decoder
comes from the last two bits of the IR, so they
determine which one register will be set by this wire
labeled ‘Reg B.’ If you look back at the chart of the

152

bits of the ALU Instruction Code, it shows that the last
two bits of the instruction are what determine which
register you want to use for Reg B.
The left side of the picture is very much like the right
side, except that there are two of everything. Remember
that in an ALU instruction such as ADD, we need to
enable two registers, one at a time, for the inputs to
the ALU. The last two bits of the instruction are also
used for ‘Reg B’ on the left, and you can see that ‘clk
e,’ ‘Reg B’ and a decoder are used to enable one
register during its proper step. Bits 4 and 5 of the IR
are used to enable ‘Reg A’ during its proper step, using
a separate decoder and a wire called ‘Reg A.’ The
outputs of these two structures are ORed together before
going to the actual register enable bits. We will never
select ‘Reg A’ and ‘Reg B’ at the same time.
What happens when the instruction that has been fetched
begins with a 1? That means that this is an ALU
instruction, and we need to do three things. First we
want to move ‘Reg B’ to TMP. Then we want to tell the
ALU which operation to do, put ‘Reg A’ on the bus and
set the output of the ALU into ACC. Then we want to move
ACC to ‘Reg B.’
Bit 0 of the IR is the one that determines if this is an
ALU instruction. When Bit 0 is on, the things that Bit 0
is wired up to make all of the steps of an ALU
instruction occur.
The next diagram shows the eight gates and the wires
that are added to the Control Section that make steps 4,
5 and 6 of an ALU instruction do what we need them to
do.
In the diagram below, just above and to the left of the
IR, there are three AND gates. The outputs of these
gates go to the three ‘op’ wires on the ALU that tell it
which operation to do. Each of these three AND gates has
three inputs. One input of each gate is wired to bit 0
of the IR. A second input of each gate is wired to step
5 from the stepper. The remaining input of each gate is
wired to bits 1, 2 and 3 of the IR.
Therefore, the three wires that go to the ALU will be
000 at all times except during step 5 when IR bit 0
happens to be a 1. At such a time, the wires going to

153

the ALU will be the same as bits 1, 2 and 3 of the IR.

IR bit 0 continues up the diagram, turns right and is
connected to one side of three more AND gates. The other
sides of these gates are connected to Steps 4, 5 and 6.
The output of the first gate comes on during step 4, and
you can see it going to two places. On the left, it
enables ‘Reg B’ onto the bus, and on the right, it sets
the bus into TMP. This step is actually not necessary
for the SHL, SHR and NOT operations, but it doesn’t harm
anything, and it would be fairly complicated to get rid
of, so for simplicity’s sake we’ll just leave it this
way.

154

The second gate comes on during step 5 (the same step
that the ALU gets its orders), and going to the left is
a wire that enables ‘Reg A’ onto the bus. The ALU now
has one input in TMP, the other input on the bus, and
its operation specified by those three ‘op’ wires, so on
the right is a wire that sets the answer into ACC.
The third gate turns on during step 6. The wire going to
the left enables ACC onto the bus, and the wire going to
the right sets the bus into ‘Reg B.’
There is just one special situation in an ALU
instruction, and that is when the operation is CMP, code
111. For a compare operation, we do not want to store
any results back into ‘Reg B.’ Therefore, there is a
three input AND gate connected to IR bits 1, 2 and 3,
which is then connected to a NOT gate, and then to a
third input on the AND gate that does step 6 of the ALU
instruction. So when the operation is 111, the first AND
will come on, the NOT will go off, and the output of the
Step 6 AND gate will not turn on.
This ALU instruction is now done. Step 7 resets the
stepper, which then goes through its steps again,
fetching the next instruction, etc, etc.

We are going to invent one more thing here, and that is
a shorthand way of writing CPU instructions on a piece
of paper. In the Instruction Code, 1000 1011 means “Add
R2 to R3,” but it takes a lot of practice for a person
to look at 1000 1011 and immediately think of addition
and registers. It also would take a lot of memorization
to think of it the other way around, that is, if you
wanted to XOR two registers, what is the Instruction
Code for XOR? It would be easier to write something like
ADD R2,R3 or XOR R1,R1.
This idea of using a shorthand has a name, and it is
called a computer language. So along with inventing an
instruction code, we will also invent a computer
language that represents the instruction code. The ALU
instruction results in the first eight words of our new
language.
Language Meaning
ADD RA,RB Add RA and RB and put answer in RB

155

SHR RA,RB Shift RA Right and put answer in RB
SHL RA,RB Shift RA Left and put the answer in RB
NOT RA,RB Not RA and put the answer in RB
AND RA,RB And RA and RB and put answer in RB
OR RA,RB Or RA and RB and put answer in RB
XOR RA,RB Exclusive OR RA and RB into RB
CMP RA,RB Compare RA and RB

When a person wants to write a computer program, he can
write it directly in the instruction code, or use a
computer language. Of course, if you write a program in
a computer language, it will have to be translated into
the actual instruction code before it can be placed in
RAM and executed.

156

The Load and Store Instructions
The Load and Store instructions are pretty simple. They
move a byte between RAM and a register. They are very
similar to each other so we will cover both of them in
one chapter.
We’ll get to the details of these instructions in a
moment, but first we need to have something that tells
us when we have a Load or Store instruction in the
Instruction Register. With the ALU instruction, all we
needed to know was that bit 0 was on. The code for every
other type of instruction begins with bit 0 off, so if
we connect a NOT gate to bit 0, when that NOT gate turns
on, that tells us that we have some other type of
instruction. In this computer, there are eight types of
instructions that are not ALU instructions, so when bit
0 is off, we will use the next three bits of the IR to
tell us exactly which type of instruction we have.
The three bits that went to the ALU in an ALU
instruction also go to a 3x8 decoder here in the Control
Section. As you remember, one and only one of the
outputs of a decoder is on at all times, so we will have
AND gates on the outputs to prevent any output from
going anywhere during an ALU instruction. But when it is
not an ALU instruction, the one output of the decoder
that is on, will get through its AND gate, and in turn
will be connected to some more gates that make the
appropriate instruction work.
In the diagram below, you can see IR bits 1, 2 and 3
going into a decoder which has eight AND gates on its
outputs. IR bit 0 has a NOT gate which goes to the other
side of those eight AND gates. This decoder is used for
the rest of the instructions that our computer will
have.

157

158

This chapter is about the instructions that use the
first two outputs of the decoder, the ones that come on
when the IR starts with 0000 or 0001.
The first instruction moves a byte from RAM to a
register, this is called the “Load” instruction. The
other one does the same in reverse, it moves a byte from
a register to RAM, and is called the “Store”
instruction.

The Instruction Code for the Load instruction is 0000,
and for the Store instruction is 0001. The remaining
four bits in both cases specify two registers, just like
the ALU instruction did, but in this case, one register
will be used to select one of the locations in RAM, and
the other register will either be loaded from, or stored
to, that RAM location.
Step 4 is the same for both instructions. One of the

159

registers is selected by IR bits 4 and 5 and is enabled
onto bus. The bus is then set into MAR, thus selecting
one address in RAM.
In step five, IR bits 6 and 7 select another one of the
CPU registers. For the Load instruction, RAM is enabled
onto the bus and the bus is set into the selected
register. For the Store instruction, the selected
register is enabled onto the bus and the bus is set into
RAM.
Each of these instructions only need two steps to
complete, step 6 will do nothing.
Here are two new words for our computer language:
Language Meaning
LD RA,RB Load RB from RAM address in RA

ST RA,RB Store RB to RAM address in RA

160

The Data Instruction
Now here is an interesting instruction. All it does is
load a byte from RAM into a Register like the Load
instruction, above. The thing that is different about it
though, is where in RAM it will get that byte.
In the Data instruction, the data comes from where the
next instruction ought to be. So you could consider that
this instruction is actually two bytes long! The first
byte is the instruction, and the next byte is some data
that will be placed into a register. This data is easy
to find, because by the time we have the instruction in
the IR, the IAR has already been updated, and so it
points right to this byte.
Here is the Instruction Code for the Data instruction.
Bits 0 to 3 are 0010. Bits 4 and 5 are not used. Bits 6
and 7 select the register that will be loaded with the
data that is in the second byte.

All this instruction needs to do is, in step 4, send IAR
to MAR, and in step 5, send RAM to the desired CPU

161

register. However, there is one more thing that needs to
happen. Since the second byte of the instruction is just
data that could be anything, we do not want to execute
this second byte as an instruction. We need to add 1 to
the IAR a second time so that it will skip this byte and
point to the next instruction. We will do this the same
way that it is done in steps 1 and 3. In step 4, when we
send IAR to MAR, we will take advantage of the fact that
the ALU is calculating IAR plus something at the same
time, we will turn on the ‘Bus 1,’ and set the answer
into ACC. Step 5 still moves the data to a Register, and
in step 6 we can move ACC to IAR.

162

163

Here is another new word for our computer language:
Language Meaning
DATA RB,xxxx

xxxx
Load these 8 bits into RB

164

The Second Great Invention
The first great invention is this idea of having a
string of instructions in RAM that get executed one by
one by the CPU. But our clock is very fast, and the
amount of RAM we have is limited. What will happen, in
far less than a second, when we have executed every
instruction in RAM?
Fortunately, we will not have to answer that question,
because someone came up with another type of instruction
that is so important that it qualifies as the second
great invention necessary to allow the computer to do
what it does. Because of the versatile arrangement of
our CPU and its Control Section, it is an extremely
simple thing to make this work, but its importance
should not be lost because of this simplicity.
This new type of instruction is called a Jump
instruction, and all it does is to change the contents
of the IAR, thus changing where in RAM the next, and
subsequent instructions will come from.
The exact type of Jump instruction described in this
chapter is called a “Jump Register” instruction. It
simply moves the contents of Reg B into the IAR. Here is
the Instruction Code for it:

165

The computer is executing a series of instructions in
RAM, one after the other, and suddenly one of those
instructions changes the contents of the IAR. What will
happen then? The next instruction that will be fetched
will not be the one that follows the last one. It will
be the one that is at whatever RAM address was loaded
into the IAR. And it will carry on from that point with
the next one, etc. until it executes another jump
instruction.
The wiring for the Jump Register instruction only needs
one step. In step 4, the selected register is enabled
onto the bus, and set into the IAR, and that is all. If
we wanted to speed up our CPU, we could use step 5 to
reset the stepper. But to keep our diagram simple, we
won’t bother with that. Steps 5 an 6 will do nothing.

166

Here is another new word for our computer language:
Language Meaning
JMPR RB Jump to the address in RB

167

Another Way to Jump
This is another type of Jump instruction. It is similar
to the Data instruction in that it uses two bytes. It
replaces the IAR with the byte that is in RAM
immediately following the instruction byte, thus
changing where in RAM the next and subsequent
instructions will come from. Here is the Instruction
Code for it. Bits 4, 5, 6 and 7 are not used in this
instruction:

This exact type of Jump instruction is just called a
“Jump.” It is useful when you know the address that you
are going to want to jump to, when you are writing the
program. The Jump Register Instruction is more useful
when the address you are going to want to jump to is
calculated as the program in running, and may not always
be the same.
One of the things you can do with a Jump instruction is
to create a loop of instructions that execute over and
over again. You can have a series of fifty instructions
in RAM, and the last instruction “Jumps” back to the
first one.

168

Like the Data instruction, the IAR already points to the
byte we need. Unlike the Data Instruction, we don’t need
to add 1 to the IAR a second time because we are going
to replace it anyway. So we only need two steps. In step
4, we send IAR to MAR. In step 5 we move the selected
RAM byte to the IAR. Step 6 will do nothing.
Here is the wiring that makes it work:

169

Here is another new word for our computer language:
Language Meaning

170

JMP Addr Jump to the address in the next byte

171

The Third Great Invention
Here is the third, and last, invention that makes a
computer a computer.
This is just like the Jump Instruction, but sometimes it
jumps, and sometimes it doesn’t. Of course, to jump or
not to jump is just two possibilities, so it only takes
one bit to determine which will happen. Mostly what we
are going to introduce in this chapter is where that one
bit comes from.
Do you remember the ‘Carry’ bit that comes out of, and
goes back into the ALU? This bit comes either from the
adder, or from one of the shifters. If you add two
numbers that result in an amount that is greater than
255, the carry bit will come on. If you left shift a
byte that has the left bit on, or right shift a byte
that has the right bit on, these situations will also
turn on the ALU’s carry out bit.
There is also a bit that tells us if the two inputs to
the ALU are equal, another one that tells us if the A
input is larger, and one more bit that tells us if the
output of the ALU is all zeros.
These bits are the only things that we have not yet
found a home for in the CPU. These four bits will be
called the “Flag” bits, and they will be used to make
the decision for a “Jump If” instruction as to whether
it will execute the next instruction in RAM or jump to
some other address.
What we are trying to get the computer to be able to
accomplish, is for it to first execute an ALU
instruction, and then have one or more “Jump If”
instructions following it. The “Jump If” will jump or
not depending on something that happened during the ALU
instruction.
Of course, by the time the “Jump If” is executing, the
results of the ALU instruction are long gone. If you go
back and look at the details of the ALU instruction, it
is only during step 5 that all of the proper inputs are
going into the ALU and the desired answer is coming out.
It is at this time that the answer is set into ACC. The
timing is the same for all four Flag bits, they are only

172

valid during step 5 of the ALU instruction. Therefore,
we need a way to save the state of the Flag bits as they
were during step 5 of the ALU instruction.

Here is the last register that we are going to add to
the CPU. This will be called the FLAG register, and we
are only going to use four bits of it, one for each of
the flags.
The Flag bits from the ALU are connected to the input of
this register, and it will be set during step 5 of the
ALU instruction just like ACC and it will stay set that
way until the next time an ALU instruction is executed.
Thus if you have an ALU instruction followed by a “Jump
If” instruction, the “Flag” bits can be used to “decide”
whether to Jump or not.
Every instruction cycle uses the ALU in step 1 to add 1

173

to the address for the next instruction, but only step 5
of the ALU instruction has a connection that sets the
Flags. (We did not show this connection in the wiring
for the ALU instruction because we had not yet
introduced the Flag Reg, but it will appear in the
completed Control Section diagram.)
This combination of Flag bits, and the Jump IF
instruction, is the third and last great invention that
makes computers as we know them today, work.
Here is the Instruction Code for a ‘Jump If’
instruction. The second four bits of the instruction
tell the CPU which flag or flags should be checked. You
put a ‘1’ in the instruction bit(s) corresponding to the
flag(s) that you want to test for. If any one of the
Flags that you test is on, the jump will happen. This
arrangement gives us a number of ways to decide whether
to jump or not. There is a second byte that contains
the address to jump to, if the jump is taken.

Here is the wiring in the Control Section that makes the
Jump If instruction work.

174

175

Step 4 moves IAR to MAR so we are prepared to get the
‘Jump to Address’ that we will use IF we jump. But
because we might not jump, we also need to calculate the
address of the next instruction in RAM. And so step 4
also turns on Bus 1 and sets the answer in ACC.
In step 5, we move ACC to IAR so we are ready to fetch
the next instruction IF we don’t jump.
Step 6 is where the “decision” is made. We will move the
second byte of the instruction from RAM to IAR IF the
third input to that AND gate is on. That third input
comes from an OR gate with four inputs. Those four
inputs come from the four Flag bits after being ANDed
with the last four bits of the Jump If instruction in
IR. If, for instance, there is a ‘1’ in the ‘Equal’ bit
of the instruction, and the ‘Equal’ Flag bit is on, then
the jump will occur.
Here are more words for our computer language. ‘J’ means
Jump, ‘C’ means Carry, ‘A’ means A is larger, ‘E’ means
A Equals B and ‘Z’ means that the answer is all Zeros.
Here are the words of the language that test a single
Flag:
Language Meaning
JC Addr Jump if Carry is on

JA Addr Jump if A is larger than B
JE Addr Jump if A is Equal to B
JZ Addr Jump if the answer is Zero

You can also test more than one flag bit at the same
time by putting a 1 in more than one of the four bits.
Actually since there are four bits, there are 16
possible combinations, but the one with all four bits
off is not useful because it will never jump. For the
sake of completeness, here are the rest of the
possibilities:
Language Meaning
JCA Addr Jump if Carry or A larger

JCE Addr Jump if Carry or A Equal B
JCZ Addr Jump if Carry or answer is Zero

176

JAE Addr Jump if A is larger or Equal to B
JAZ Addr Jump if A is larger or answer is Zero
JEZ Addr Jump if A Equals B or answer is Zero
JCAE Addr Jump if Carry or A larger or Equal to B
JCAZ Addr Jump if Carry or A larger or Zero
JCEZ Addr Jump if Carry or A Equals B or Zero
JAEZ Addr Jump if A larger or Equal to B or Zero
JCAEZ Addr Jump if Carry, A larger, Equal or Zero

177

The Clear Flags Instruction
There is one annoying detail that we need to have here.
When you do addition or shifting, you have the
possibility of getting the carry flag turned on by the
operation. This is necessary, we use it for the Jump If
instruction as in the previous chapter.
The Carry Flag is also used as an input to the addition
and shift operations. The purpose of this is so you can
add numbers larger than 255 and shift bits from one
register to another.
The problem that arises is that if you are just adding
two single-byte numbers, you don’t care about any
previous Carry, but the Carry Flag may still be set from
a previous operation. In that case, you might add 2+2
and get 5!
Bigger computers have several ways to do this, but for
us, we will just have a Clear Flags Instruction that you
need to use before any adds or shifts where an
unexpected carry bit would be a problem.
Here is the Instruction Code for this instruction. Bits
4, 5, 6 and 7 are not used.

The wiring for this is very simple and a bit tricky. We
will not enable anything onto the bus, thus it and the
‘A’ ALU input will be all zeros. We will turn on ‘Bus 1’

178

so the ‘B’ input is 0000 0001. We won’t send an
operation to the ALU, so it will be in ADD mode. The
ALU, therefore, will be adding 0 and 1, and there may be
a carry input. The answer then will be either 0000 0001
or 0000 0010. But there will be no carry output, the
answer is not zero and B is larger than A so ‘equal’ and
‘A larger’ will both be off. We ‘set’ the Flag Reg at
this time while all four Flag bits are off.

179

Here is another word for our language.
Language Meaning
CLF Clear all Flags

180

Ta Daa!
We have now wired up the Control Section of our CPU. As
a result, we can place a series of instructions in RAM,
and the Clock, Stepper, Instruction Register and wiring
will fetch and execute those instructions. Here is the
entire control section:

181

182

Yes, this looks pretty complicated, but we have looked
at every part of it already. The only thing we had to
add were some OR gates because most of the ‘enables’ and
‘sets’ need multiple connections. This actually has a
lot fewer parts than the RAM, but that was much more
repetitive. Most of the mess here is just getting the
wires from one place to another.
The byte that is placed in the Instruction Register
causes a certain activity to occur. Each possible
pattern causes a different activity. Therefore, we have
a code where each of the 256 possible codes represents a
different specific activity.
As mentioned, this is called the Instruction Code.
Another name for it is “machine language,” because this
is the only language (code) that the machine (computer)
“understands.” You “tell” the machine what to do by
giving it a list of orders you want it to carry out. But
you have to speak the only language that it
“understands.” If you feed it the right byte-sized
patterns of ons and offs, you can make it do something
that will be useful.
Here are all of the Instruction Codes and our shorthand
language brought together in one place.
Instruction Code Language Meaning
1000 rarb ADD RA,RB Add

1001 rarb SHR RA,RB Shift Right
1010 rarb SHL RA,RB Shift Left
1011 rarb NOT RA,RB Not
1100 rarb AND RA,RB And
1101 rarb OR RA,RB Or
1110 rarb XOR RA,RB Exclusive OR
1111 rarb CMP RA,RB Compare
0000 rarb LD RA,RB Load RB from RAM addr in RA
0001 rarb ST RA,RB Store RB to RAM addr in RA
0010 00rb xxxxxxxx DATA RB,Data Load these 8 bits into RB
0011 00rb JMPR RB Jump to the address in RB
0100 0000 xxxxxxxx JMP Addr Jump to the addr in the next byte

183

0101 Caez xxxxxxxx JCAEZ Addr Jump if any tested Flag is on
0110 0000 CLF Clear all Flags

Believe it or not, everything you have ever seen a
computer do, is simply the result of a CPU executing a
long series of instructions such as the ones above.

184

A Few More Words on Arithmetic
We don’t want to spend a lot of time on this subject,
but the only thing that we have seen so far that looks
like arithmetic is the adder, so we will look at simple
examples of slightly more complex arithmetic. Not to
teach you how to act like a computer, but just to prove
to you that it works.
Here is how you do subtraction. It is done with the
adder and the NOT gates. If you want to subtract R1 from
R0, first you NOT R1 back into itself. Then you add 1 to
R1, then you Add R0 to R1.
This shows an example of subtracting 21 from 37:

185

The last step is adding 37 + 235, the answer of which
should be 272. But a single register cannot hold a
number larger than 255. Therefore the adder turns on its
Carry bit, and the eight bits remaining of the answer
are 0001 0000, which is 16, the correct answer for 37
minus 21.
Why does NOTting and ADDing result in subtraction? Why
do you have to add 1 after NOTting? Why do you ignore

186

the carry bit? We are not going to attempt to answer any
of these questions in this book. These are the details
that keep a very few engineers from getting a good
night’s sleep. These brave people study these problems
and design ways for ordinary people to not have to
understand it.

Here is how you do multiplication. When we do
multiplication with a pencil and paper in the decimal
system, you have to remember your multiplication tables,
you know, 3 times 8 equals 24, 6 times 9 equals 54, etc.
In binary, multiplication is actually much easier than
in decimal. 1 times 1 equals 1, and for every other
combination, the answer is 0! It just couldn’t get much
simpler than that! Here’s an example of multiplying 5
times 5 with pencil and paper in binary.

If you look at what’s happening here, if the right digit
of the bottom number is a 1, you put the top number in
the answer. Then, for every digit to the left of that,
shift the top number left, and if the bottom digit is a
1, add the shifted top number to the answer. When you
get through the eight bits of the bottom number, you’re

187

done.
So multiplication is accomplished with the adder and the
shifters. It’s as simple as that. You can write a simple
program like this:
R0 contains the bottom number, R1 contains the top
number and R2 will contain the answer. R3 is used to
jump out of the loop after going through it eight times.
RAM Addr Instruction Comments

50 DATA R3,0000
0001

* Put ‘1’ into R3

52 XOR R2,R2 * Put ‘0’ in R2
53 CLF * Clear Flags
54 SHR R0 * One bit to Carry Flag
55 JC 59 * Do the ADD
57 JMP 61 * Skip the ADD
59 CLF * Clear Flags
60 ADD R1,R2 * ADD this line
61 CLF * Clear Flags
62 SHL R1 * Mult top by 2
63 SHL R3 * Shift counter
64 JC 68 * Out if done
66 JMP 53 * Do next step
68 (Next instruction in program)

See what happens with the Registers as this program goes
through its loop the first three times.

R0 R1
 R2 R3
At start (after 52):
 0000 0101 0000 0101 0000 0000 0000 0001
First time (after 63):
 0000 0010 0000 1010 0000 0101 0000 0010
Second time (after 63):
 0000 0001 0001 0100 0000 0101 0000 0100

188

Third time (after 63):
 0000 0000 0010 1000 0001 1001 0000 1000
The important thing that has happened here is that R1
has been added to R2 twice. It happened on the first
time through, when R1 contained 0000 0101, and on the
third time through, after R1 had been shifted left twice
and therefore contained 0001 0100. R2 now contains
0001 1001 binary, which is 16+8+1, or 25 decimal, which
is the correct answer for 5 times 5. The loop will
repeat 5 more times until the bit in R3 gets shifted out
to the Carry Flag, but the total won’t increase because
there are no more 1s in R0.
This program will go through eight times. We start with
0000 0001 in R3. Near the end of the program, R3 gets
shifted left. The first seven times through, there will
be no carry, so the program will get to the ‘JMP 53’ and
go back up to the third instruction of the program. The
eighth time R3 gets shifted left, the one bit that is on
gets shifted out of R3 and into the Carry flag.
Therefore, the ‘JC 68’ will jump over the ‘JMP 53’ and
carry on with whatever instructions come after this.
The byte in R0 gets shifted right to test which bits are
on. The byte in R1 gets shifted left to multiply it by
two. When there was a bit in R0, you add R1 to R2. And
that’s all there is to it.
One thing we do not address in this example is what
happens if the answer of the multiplication is more than
255. If a multiplication program multiplies two one-byte
numbers, it ought to be able to handle a two-byte
answer. That would take care of any two numbers that you
might start with. This would be accomplished with the
carry flag and some more Jump If instructions. We won’t
torture the reader with the details.
Reading a program like the one above is an entirely
different skill than reading the diagrams and graphs we
have seen so far in the book. I hope you were able to
follow it, but no one is expected to become an expert at
reading programs because of this book.

Division also can be done by our computer. There are
several ways it can be done, and we are not going to

189

examine any of them in any detail. Just imagine the
following simple method. Lets say you want to divide
fifteen by three. If you repeatedly subtract three from
fifteen, and count the number of subtractions you can
accomplish before the fifteen is all gone, that count
will be the answer. Like these five steps: (1)15-3=12,
(2)12-3=9, (3)9-3=6, (4)6-3-3, (5)3-3=0. This is easily
turned into a program.
Computers also have ways of handling negative numbers
and numbers with decimal points. The details are very
tedious, and studying them would not enhance our
understanding of how computers work. It still comes down
to nothing more than NAND gates. Our simple computer
could do all of these things with programs.

190

The Outside World
What we have described so far is the whole computer. It
has two parts, the RAM and the CPU. That’s all there is.
These simple operations are the most complicated things
that a computer can do. The ability to execute
instructions, modify bytes with the ALU, the ability to
jump from one part of the program to another, and most
importantly, the ability to jump or not jump based on
the result of a calculation. This is what a computer is
able to do. These are simple things, but since it
operates so quickly, it can do huge numbers of these
operations that can result in something that looks
impressive.
These two parts make it a computer, but if all the
computer could do is run a program and rearrange bytes
in RAM, no one would ever know what it was doing. So
there is one more thing that the computer needs in order
to be useful, and that is a way to communicate with the
outside world.
Dealing with anything outside of the computer is called
‘Input/Output’ or ‘I/O’ for short. Output means data
going out of the computer; Input means data coming into
the computer. Some things are input only, such as a
keyboard, some things are output only, like a display
screen, some things do both input and output, like a
disk.
All we need for I/O is a few wires, and a new
instruction.
For the wires, all we are going to do is to extend the
CPU bus outside of the computer and add four more wires
to go with it. This combination of 12 wires will be
called the I/O Bus. Everything that is connected to the
computer is attached to this one I/O bus.
The devices that are connected to the I/O bus are called
‘peripherals,’ because they are not inside the computer,
they are outside of the computer, on its periphery (the
area around it.)
More than one thing can be attached to the I/O bus, but
the computer controls the process, and only one of these
things is active at a time.

191

Each thing attached to the I/O bus has to have its own
unique I/O address. This is not the same as the
addresses of the bytes in RAM, it is just some ‘number’
that the peripheral will recognize when placed on the
bus.
Here is what the I/O bus looks like in the CPU, there at
the bottom right of the drawing.

In the diagram below are the wires of the I/O Bus. The
CPU Bus is the same eight-wire bundle that goes
everywhere else. The ‘Input/Output’ wire determines
which direction data will be moving on the CPU bus,
either in or out. The ‘Data/Address’ wire tells us
whether we will be transferring a byte of data, or an

192

I/O Address that selects one of the many devices that
could be attached to the I/O bus. ‘I/O Clk e’ and ‘I/O
Clk s’ are used to enable and set registers so that
bytes can be moved back and forth.

Here is the control section wiring for the new
instruction that controls the I/O bus. This shows where
the four new wires for the I/O bus come from. They are
at the bottom right of the drawing. They were also shown
on the full control section diagram a few chapters back.
Sorry if that was confusing, but having that diagram in
the book once was enough.

193

IR bits 4 and 5 are placed on the I/O bus at all times.

194

To make the I/O operation happen, only one step is
needed. For Output, Reg B is enabled, and I/O Clk s is
turned on and off during step 4. Steps 5 and 6 do
nothing. For Input, I/O Clk e is enabled, and Reg B is
set during step 5. Steps 4 and 6 do nothing.
Here is the Instruction Code for the I/O instruction:

This one instruction can be used in four different ways
depending on IR bits 4 and 5, and therefore there are
four new words for our language.
Language Meaning
IN Data,RB Input I/O Data to RB

IN Addr,RB Input I/O Address to RB
OUT Data,RB Output RB to I/O as Data
OUT Addr,RB Output RB to I/O as Address

Each I/O device has its own unique characteristics, and

195

therefore needs unique parts and wiring to connect it to
the I/O bus. The collection of parts that connects the
device to the bus is called a “device adapter.” Each
type of adapter has a specific name such as the
‘keyboard adapter’ or the ‘disk adapter.’
The adapter does nothing unless its address appears on
the bus. When it does, then the adapter will respond to
the commands that the computer sends to it.
With an ‘OUT Addr’ instruction, the computer turns on
the address wire, and puts the address of the device it
wants to talk to, on the CPU bus. The peripheral
recognizes its address and comes to life. Every other
peripheral has some other address, so they won’t
respond.
We are not going to describe every gate in the I/O
system. By this time, you should believe that bytes of
information can be transferred over a bus with a few
control wires. The message of this chapter is only the
simplicity of the I/O system. The CPU and the RAM are
the computer. Everything else, disks, printers,
keyboards, the mouse, the display screen, the things
that make sound, the things that connect to the
internet, all these things are peripherals, and all they
are capable of doing is accepting bytes of data from the
computer or sending bytes of data to the computer. The
adapters for different devices have different
capabilities, different numbers of registers, and
different requirements as far as what the program
running in the CPU must do to operate the device
properly. But they don’t do anything fancier than that.
The computer controls the process with a very few simple
I/O commands that are executed by the CPU.

196

The Keyboard
A keyboard is one of the simplest peripherals connected
to the I/O bus. It is an input only device, and just
presents one byte at a time to the CPU.
The keyboard has eight wires inside, its own little bus
as shown on the right. When you press a key, it simply
connects electricity to the wires necessary to create
the ASCII code corresponding to the key that was
pressed. That little box that says ‘Control,’ is also
notified when a key is pressed, and sets the ASCII code
into the Keycode Register.

197

After pressing a key, there will be an ASCII code
waiting in the Keycode Register. Here’s how the CPU gets
that code into one of its registers.
AND gate #1 has eight inputs. They are connected to the
CPU bus, four of them through NOT gates. Thus this AND
gate will turn on any time the bus contains 0000 1111.
This is the I/O address of this keyboard adapter.
AND gate #2 comes on only during ‘clk s’ time of an OUT
Addr instruction. It operates the ‘set’ input of a
Memory bit. If the bus contains 0000 1111 at this time,
the ‘i’ input will be on, and the Memory bit will turn

198

on. When this Memory bit is on, it means that the
keyboard adapter is active.
AND gate #3 comes on during ‘clk e’ time of an IN Data
instruction. If the Memory bit is on, AND gate #4 will
come on and the Keycode Register will be enabled onto
the bus, which will be set into Reg B in the CPU.
Every adapter that is connected to the I/O bus needs to
have the type of circuitry we see in gates #1 and #2 and
the memory bit above. Each adapter will have a
different combination that turns gate #1 on; this is
what allows the CPU to select each adapter individually.
Here is a little program that moves the current keypress
into Reg 3 in the CPU.
Instruction Comments
Data R2,0000 1111 * Put Addr of Keyboard in Reg 2
OUT Addr,R2 * Select Keyboard
IN Data,R3 * Get ASCII of key pressed
XOR R2,R2 * Clear Address in Reg 2
OUT Addr,R2 * Un-Select Keyboard

That little ‘Control’ box clears the Keycode Register
after it has been sent to the CPU.
The program running in the CPU will check the keyboard
adapter on a regular basis, and if the byte that it
receives is all zeros, then no key has been pressed. If
the byte has one or more bits on, then the program will
do whatever the program has been designed to do with a
keystroke at that time.
Again, we are not going to go through every gate in the
Keyboard adapter. All device adapters have the same
sorts of circuitry in order to be able to respond when
they are addressed, and send or receive bytes of
information as needed. But it is no more complicated
than that. That is all that I/O devices and adapters do.

199

The Display Screen
Television and computer display screens work the same
way, the main difference between them is only what they
display. This is not actually computer technology,
because you don’t need a display screen to have a
computer, but most computers do have a screen, and the
computer spends a lot of its time making the screen look
like something, so we need to know a little bit about
how it works.
Television appears to give you moving pictures with
sound. The pictures and sound are done separately, and
in this chapter, we are only concerned with how the
picture works.
The first thing to know is that although the picture
appears to be moving, it is actually a series of still
pictures presented so quickly that the eye doesn’t
notice it. You probably already knew that, but here’s
the next thing. You have seen motion picture film. It is
a series of pictures. To watch a movie, you put the film
in a projector, which shines light through one picture,
then moves the film to the next picture, shines light
through it, etc. It usually runs at 24 pictures per
second, which is fast enough to give the illusion of a
constantly moving picture.
Television goes a bit faster, about 30 pictures per
second, but there is another, much bigger difference
between film and television. With the movie film, each
still picture is shown all at once. Each picture is
complete, when you shine the light through it, every
part of the picture appears on the screen
simultaneously. Television is not capable of doing this.
It does not have a whole picture to put on the screen
all at once.
All that a television can do at one instant in time, is
to light up one single dot on the screen. It lights up
one dot, then another dot, then another, very quickly
until one whole picture’s worth of dots has been lit.
This whole screen’s worth of dots makes up one still
picture, thus it has to light up all of the dots within
one thirtieth of a second, and then do it all over again

200

with the next picture, etc. until it has placed 30
picture’s worth of dots on the screen in one second. So
the TV is very busy lighting up individual dots, 30
times the number of dots on the screen, every second.
Usually, the top left dot is lit first, then the one to
its right, and so on across the top of the screen to the
top right corner. Then it starts with the second line of
dots, going across the screen again, the third line,
etc. until it has scanned the entire screen. The
brightness of each dot is high or low so that each part
on the screen gets lit up to the proper brightness to
make the screen look like the intended image.
At any one instant in time, the television is only
dealing with one single solitary dot on the screen. So
with television, there are two illusions – the illusion
of motion coming from a series of still pictures, as
well as the illusion of complete still pictures that are
actually drawn one dot at a time. This second illusion
is aided by what the screen in made of, each dot only
gets lit up for a tiny fraction of a second, and it
starts to fade away immediately. Fortunately, whatever
the screen is made of that glows, continues to glow to
some degree between one time when the dot is lit up and
1/30th of a second later when that same dot gets lit up
again.
To the eye, you just see a moving picture, but there are
a lot of things going on to make it appear that way.
In a computer, a single dot on the screen is called a
‘picture element,’ or ‘pixel’ for short.
Computer screens work just like televisions. They also
have to scan the entire screen 30 times a second to
light up each individual pixel and thereby make an image
appear. Even if the content of the screen is not
changing, something in the computer has to scan that
unchanging image onto the screen 30 times every second.
No scanning, no picture – that’s just the way it works.
We’re not going to go into the same amount of detail
here that we did with the CPU and the RAM, those two are
what make it a computer, but if we want to know how our
computer is able to put something on the screen that we
can read, we need to have the basic idea of how it

201

works.
In this chapter we will look at the simplest kind of
screen, the kind that is black and white, and whose
pixels can only either be fully on or fully off. This
type of screen can display characters and the type of
pictures that are made of line drawings. Later in the
book we will see the few simple changes that enable a
screen to display things like color photographs.
The major parts are three. First there is the computer,
we have seen how that works. It has an I/O Bus that can
move bytes to and from things outside of the computer.
Second is the screen. The screen is just a large grid of
pixels, each of which can be selected, one at a time,
and while selected, can either be turned on, or not. The
third item is the ‘display adapter.’ The display adapter
is connected to the I/O Bus on one side, and to the
screen on the other side.
The heart of a display adapter is some RAM. The display
adapter needs its own RAM so it can “remember” which
pixels should be on, and which pixels should be off. In
the type of screen we are going to describe here, there
needs to be one bit in RAM for each pixel on the screen.
In order to make the screen scan every pixel 30 times
every second, the Display Adapter needs its own clock
that ticks at a speed that is 30 times the number of
pixels on the screen. At each tick of the clock, one
pixel is selected and it is turned on or not by the
corresponding bit from the RAM.
As an example, lets use an old type of screen. It is a
black and white screen that displays 320 pixels across
the screen and 200 pixels down. That comes out to 64,000
individual pixels on the screen. Each pixel on the
screen has a unique address consisting of two numbers,
the first being the left-right or horizontal position,
and the other being the up-down or vertical position.
The address of the top left pixel is 0,0 and the bottom
right pixel is 319,199
64,000 pixels times 30 pictures per second means that
this Display Adapter’s clock needs to tick 1,920,000
times per second. And since there are eight bits in a
byte, we will need 8,000 bytes of display RAM to tell
each of the 64,000 screen pixels whether to be on or

202

off.
The display adapter has a register that sets the
horizontal position of the current pixel. The display
adapter adds 1 to this register at every tick of the
clock. It starts at zero, and when the number in it gets
to 319, the next step resets it back to zero. So it goes
from zero to 319 over and over again. There is also a
register that sets the vertical position of the current
pixel. Every time the horizontal register gets reset to
zero, the display adapter adds 1 to the vertical
register. When the vertical register reaches 199, the
next step will reset it to zero. So as the horizontal
register goes from zero to 319 200 times, the vertical
register goes from zero to 199 once.
The currently selected screen pixel is controlled by
these registers, so as the horizontal register goes from
0 to 319, the current pixel goes across the screen once.
Then the vertical register has one added to it, and the
current pixel moves down to the first pixel on the next
line.
Thus, the clock and the horizontal and vertical
registers select each pixel on the screen, one at a
time, going left to right in one row, then selecting
each pixel in the next row down, then the next, etc.
until every pixel on the screen has been selected one
time. Then it starts all over again.
At the same time, there is another register that
contains a display RAM address. This register also gets
stepped through, although we only need one new byte for
every eight pixels. The bits of each byte, one at a
time, are sent to the screen at eight consecutive pixels
to turn them on or off. After every eight pixels, the
RAM address register has 1 added to it. By the time all
of the pixels have been stepped through, the entire RAM
has also been stepped through, and one entire picture
has been drawn. When the horizontal and vertical
registers have both reached their maximums, and are
reset to zero, the RAM address is also reset to zero.

203

The display adapter spends most of its time painting the
screen. The only other thing it has to do is to accept
commands from the I/O Bus that will change the contents
of the display adapter RAM. When the program running in
the CPU needs to change what’s on the screen, it will
use the I/O OUT command to select the display adapter,
and then send a display adapter RAM address and then a
byte of data to store at that address. Then as the
adapter continues to repaint the screen, the new data
will appear on the screen at the appropriate spot.
The display adapter RAM is built differently than the
RAM in our computer. It keeps the input and output
functions separate. The inputs of all storage locations
are connected to the input bus, and the outputs of all
storage locations are connected to the output bus, but
the input bus and the output bus are kept separate. Then
there are two separate memory address registers, one for
input and one for output. The input MAR has a grid that
only selects which byte will be ‘set,’ and the output
MAR has a separate grid that only selects which byte
will be ‘enabled.’
With this setup, the screen and the display RAM can both
be continuously scanned using only the output MAR and

204

the enable bit. When the I/O Bus is used to write into
the display RAM, it uses only the input MAR and the set
bit.
This is how the display adapter creates an image on the
screen. Because of the way it works, there is an
interesting relationship between which bits in the
display RAM correspond to which pixels on the screen. As
it scans the first eight pixels of the top line, it uses
the individual bits of byte 0 of its RAM to turn the
pixels on or off. As it scans the second eight pixels,
it uses the individual bits of byte 1 of its RAM, etc.
It takes 40 bytes of RAM to draw the first line, and so
the last eight pixels, which are numbered 312 through
319, come from RAM byte 39. The second row uses byte 40
to draw its first 8 pixels, etc.
If you want to write letters and numbers on the screen,
how do you do it? If you put the ASCII code for ‘A’ into
a byte in the display RAM, you will just get eight
pixels in a row where one is off, then one is on, then
five are off and the last one is on. That’s not what an
‘A’ should look like.
There is a solution for this, and it involves…

205

Another Code
When you want to print or display written language, you
need to translate the ASCII code into something that is
readable by a live person. We have a code, 0100 0101,
that appears on the ASCII code table next to the letter
‘E.’ But how does the computer turn 0100 0101 into a
readable ‘E’?
We have a display screen, but the screen is a just a
grid of pixels, there are no human readable ‘E’s in
anything we have described so far. In order to get an
‘E’ on the screen, there has to be something that makes
that shape that we recognize as a letter of the
alphabet.
Therefore, we need another code. This code is really
about little pictures made out of dots. For each
character that we want to be able to draw on the screen,
we need a little picture of that character. If you take
a grid 8 pixels wide and 8 pixels high, you could decide
which pixels had to be on to make a little picture that
looks like the character that you want to draw on the
screen, like this:

If you turn this picture into ons and offs, you could
store it in eight bytes. If there are 100 different
characters that you want to be able to display on the
screen, then you’d need 100 different little pictures
like this, and it would require 800 bytes of RAM to
store it. Our little computer only has a 256 byte RAM,

206

so this would be a good time to imagine that larger
version that we described earlier.
These 800 bytes are a type of code known as a “font.”
If you want to make a character appear in a certain
place on the screen, you need to choose the correct
little picture from the font, and then use I/O
instructions to copy the eight bytes of the picture to
the proper bytes in the display adapter’s RAM.
If the pictures in our font are arranged in the same
order as the ASCII code table, then we can use the
numeric value of an ASCII code to find the corresponding
picture within the font. The ASCII code for ‘E’ is 0100
0101. If you apply the binary number code to the same
pattern of ones and zeros, you get the decimal number
69. ‘E’ then, is the 69th code in ASCII, and the picture
of an ‘E’ will be the 69th picture within the font.
Since there are eight bytes in each picture, you
multiply the 69 by 8, and that tells you that the
picture for ‘E’ will be the eight bytes starting at
address 552.
Now we need to know where to copy these bytes to in the
display RAM. Lets say that we want to display an ‘E’ at
the very top left of the screen. Where are the bits that
turn on the pixels that we are interested in? Well, the
first line is easy, it is the first eight bits of the
display RAM, Address 0. So we use a series of OUT
instructions to copy RAM address 552 to display RAM
address 0. Now, where is the second line in the display
RAM? The display paints all 320 bits of the top row
before it moves down to the second row. That means that
it uses 40 bytes on each row, so the top row uses bytes
0-39. That means that the second byte of the picture of
‘E’ at RAM address 553 needs to be written at address 40
in the display RAM. Similarly, the third through eighth
bytes get written at bytes 80, 120, 160, 200, 240 and
280. When you have done all of that, you would then see
a complete ‘E’ on the screen. If you wanted to write an
‘X’ on the screen right next to the ‘E’, you would
locate the eight bytes in the font for ‘X’ and copy them
into display RAM bytes 1, 41, 81, 121, 161, 201, 241 and
281. If you need 27 ‘E’s on your screen, you just copy
the one ‘E’ in your font to 27 different places in the

207

display RAM.

Of course, this seems like a lot of work just to make a
single letter appear on the screen. The program that
does this would need a loop of instructions that
calculates the first ‘from’ and ‘to’ addresses, then
issues the appropriate OUT instructions to copy the
first byte to the display RAM. Then the loop would
repeat, updating both addresses each time, until all
eight bytes had been copied to the appropriate places.
We’re not going to write this program, but it could
easily be a 50 instruction program that has to loop
around eight times before it’s finished. That means that
it could take 400 instruction cycles just to put one
character on the screen! If you drew 1000 characters on
the screen, that might take 400,000 instruction cycles.
On the other hand, that’s still only about one quarter
of one percent of what this computer can do in one
second.
This just goes to show you why computers need to be so
fast. The individual things that they do are so small,
that it takes a huge number of steps to get anything
done at all.

208

The Final Word on Codes
We have seen several codes used in our computer. Each
one was designed for a specific purpose. Individual
coded messages are put in bytes, and moved around and
used to get things done.
The bytes do not ‘know’ which code was used to choose
the pattern that they contain. There is nothing in the
byte itself that tells you which code it is supposed to
be.
Certain parts of the computer are built with various
codes in mind. In the ALU, the adder and comparator are
built to treat bytes as though they contain values
encoded with the binary number code. So are the Memory
Address Register and the Instruction Address Register.
The Instruction Register is built to treat its contents
as though it contains values encoded with the
Instruction Code.
The Display adapter RAM bits are just ons or offs for
individual pixels. Pictures and fonts are strings of
bytes that will result in something that can be
recognized by a person when it is organized, and the
brightnesses are set, by the wiring of a display adapter
and screen.
The ASCII code table does not appear anywhere inside the
computer because there is no way to represent a letter
of the alphabet except by using a code.
The only places where ASCII gets converted between
characters and the code for the character, are in the
peripherals. When you press ‘E’ on the keyboard, you get
the ASCII code for an ‘E.’ When you send the ASCII code
for an ‘E’ to a printer, it prints the letter ‘E.’ The
people who build these peripherals have an ASCII code
table in front of them, and when they build a keyboard,
the switch under the fourth button in the second row,
which has the letter ‘E’ printed on it, is wired up to
the proper bus wires to produce the code that appears
next to the letter ‘E’ on the ASCII code table.
An ‘E’ is the fifth letter of an alphabet used by people
to represent sounds and words in the process of writing

209

down their spoken language. The only ‘E’s in the
computer are the one on the keyboard and the ones that
appear on the screen. All the ‘E’s that are in bytes are
just the code that appears next to the ‘E’ on an ASCII
code table. They are not ‘E’s, there is no way to put an
‘E’ in a computer. Even if you put a picture of an ‘E’
in a computer, it isn’t actually an ‘E’ until it is
displayed on the screen. That’s when a person can look
at it and say “That’s an E.”
Bytes are dumb. They just contain patterns of ons and
offs. If a byte contains 0100 0101, and you send it to
the printer, it will print the letter ‘E.’ If you send
it to the Instruction Register, the computer will
execute a Jump instruction. If you send it to the Memory
Address Register, it will select byte number 69 of the
RAM. If you send it to one side of the Adder, it will
add 69 to whatever is on the other side of the Adder. If
you send it to the display screen, it will set three
pixels on and five pixels off.
Each of these pieces of the computer is designed with a
code in mind, but once it is built, the mind is gone and
even the code is gone. It just does what it was designed
to do.
There is no limit to the codes that can be invented and
used in a computer. Programmers invent new codes all the
time. Like the cash register in the fast food restaurant
mentioned earlier, somewhere in that machine is a bit
that means ‘include French fries.’

210

The Disk
Most computers have a disk. This is simply another
peripheral that is attached to the I/O bus. The disk’s
mission is very simple; it can do two things. You can
send it bytes, which it will store, or you can tell it
to send back some bytes, which were stored previously.
There are two reasons that most computers have a disk.
First, they have the ability to store a huge number of
bytes, many times greater than the Computer’s RAM. The
CPU can only execute programs that are in RAM, it can
only manipulate bytes that are in RAM. But there is
never enough RAM to store all of the things that you may
want to do with your computer. And so a disk will hold
everything, and when you want to do one thing, the bytes
on the disk for that one thing will be copied into RAM
and used. Then when you want to do something different,
the bytes for the new activity will be copied from the
disk into the same area of RAM that had been used for
the first activity.
The second reason that computers have disks, is that the
bytes stored on the disk do not disappear when you turn
the power off. The RAM loses its settings when you turn
the computer off, when you turn it back on, all bytes
are 0000 0000, but the disk retains everything that has
been written on it.
A computer bit has been defined so far as a place where
there is or is not some electricity. But prior to that,
we defined it as a place that can be in one of two
different states. On a disk, the electric bits are
transformed into places on the surface of the disk that
have been magnetized one way or the other. Since magnets
have north and south poles, the spot on the disk can be
magnetized either north-south or south-north. One
direction would represent a zero, and the other
direction, a one. Once a spot is magnetized, it stays
that way unless the same spot gets magnetized the other
way. Turning the power off has no effect on the
magnetized spots.
A disk, as its name implies, is a round thing, that
spins around quickly. It is coated with a material that

211

can be magnetized easily. Do you remember the telegraph?
At the receiving end, there is a piece of metal with a
wire wrapped around it. That piece of metal turns into a
magnet when electricity moves through the wire. The disk
has a tiny version of this called a ‘head’ mounted on an
arm. The arm holds the head very close to the surface of
the spinning disk, and the arm can swing back and forth,
so that the head can reach any point on the surface of
the disk. If you put electricity through the head, it
can magnetize the surface of the disk. Also, it works
the other way around; when the head passes over a
magnetized area, it makes electricity appear in the
wires wrapped around the head. Thus, the head can either
write on the disk or read what has been previously
written on the disk. The bits of the bytes are written
one after another on the disk surface.
The surface of the disk is divided into a series of
rings, called tracks, very close to each other. The head
can move across the surface and stop on any one of the
tracks. Each circular track is usually divided into
short pieces called sectors. Since a disk has two sides,
usually both sides are coated with the magnetic material
and there is a head on each side.

212

In RAM, every byte has its own address. On a disk, there
is also a way to locate bytes, but it is very different.
You have to specify which head, which track and which
sector at which a block of bytes is located. That is the
type of “address” that the data on a disk has, like
“Head 0, Track 57, Sector 15.” And at that address,
there is not just one byte, but a block of bytes,
typically several thousand. For the examples in our
book, since our RAM is so small, we will talk about a
disk that stores blocks of 100 bytes.
When a disk is read or written, there is no way to
access an individual byte in the block of bytes. The
whole block has to be transferred to RAM, worked on in
RAM, and then the whole block has to be written back to
the disk.
The disk spins quickly, faster than that fan on your
desk; many popular disks spin 7200 times a minute, which

213

is 120 times per second. That’s pretty fast, but
compared to the CPU, it is still pretty slow. In the
time that the disk spins around one time, the Clock will
tick over eight million times, and our CPU will execute
well over a million instructions.
The disk, like every peripheral, is connected to its own
adapter, which in turn is connected to the I/O bus. The
disk adapter does a few things. It accepts commands to
select a head, select a track and select a sector. It
accepts commands to read from or write to, the block of
bytes at the currently selected head, track and sector.
There will also probably be a command where the CPU can
check the current position of the arm and the disk.
The command to select a head can be completed
immediately, but when it gets a command to select a
track, it has to move the head to that track, which
takes a long time in terms of instruction cycles. When
it gets a command to select a sector, it has to wait for
that sector to spin around to where the head is, which
also takes a long time in terms of instruction cycles.
When the CPU has determined that the head has arrived at
the desired track and sector, then the I/O commands for
reading or writing can be executed, and one byte at a
time will be transferred over the I/O bus. A program
that reads or writes a block of bytes has to continue
the process until the whole block of bytes is complete.
With our simple I/O system, the individual bytes move
between the disk and a CPU register. The program that is
running has to move these bytes to or from RAM, usually
in consecutive locations.
This is all that a disk does. You have probably used a
computer that had a disk, and didn’t need to know
anything about heads, tracks and sectors. And that is a
good thing, because it is pretty annoying to have to
deal with a disk at that level of detail. We will look
at how a disk is normally used later in the book.
Another language note: There are several words that mean
virtually the same thing, but for some reason certain
words go with certain technologies.
If you want to send someone a letter, first you write it
on a piece of paper, then when the recipient gets the
letter, he reads it.

214

In the days of tape recorders, you would start with a
blank tape. Then you would record some music on the
tape. When you wanted to hear the music again you would
play the tape.
When it comes to computer disks, putting something on
the disk is called writing. Getting something off the
disk is called reading.
Putting something into RAM is called writing or storing.
Getting something out of RAM is called reading or
retrieving.
Putting something into a CPU register is usually called
loading.
Putting music on a disk is sometimes called recording,
sometimes burning. Listening to a disk is still usually
called playing, but if you are copying it onto your
computer, then it is called ripping.
Writing, recording, storing, loading and burning all
mean pretty much the same thing. Reading, retrieving,
playing and ripping are also very similar. They mean the
same things, it’s just a difference of words.

215

Excuse Me Ma’am
There is one other thing that most computers have as
part of their Input/Output system. A computer doesn’t
need one of these to be called a computer, so we will
not go through every gate needed to build it. But it is
a very common thing, so we will describe how it works.
You know if Mom is in the kitchen stirring a pot of
soup, and little Joey comes running in and says “I want
a glass of milk,” Mom will put down the spoon, go over
to the cabinet, get a glass, go to the refrigerator,
pour the milk, hand it to Joey, and then she will go
back to the stove, pick up the spoon and resume stirring
the soup. The soup stirring was interrupted by getting a
glass of milk, and then the soup stirring resumed.
This thing that most computers have, is called an
“Interrupt,” and it works very much like what happened
with Mom and Joey.
An interrupt starts with one more wire added to the I/O
Bus. This wire is used by certain device adapters to let
the CPU know that it’s a good time for the CPU to do an
I/O operation, like right after someone presses a key on
the keyboard. When a device adapter turns the Interrupt
bit on, the next time the stepper gets back to step 1,
the next instruction cycle will not do the usual fetch
and execute, but rather it will do of the following:
Step 1 move binary 0 to MAR
Step 2 move IAR to RAM
Step 3 move binary 1 to MAR
Step 4 move Flags to RAM
Step 5 move binary 2 to MAR
Step 6 move RAM to IAR
Step 7 move binary 3 to MAR
Step 8 move RAM to Flags

The result of this sequence is that the current IAR and
Flags are saved to RAM addresses 0 and 1, and they are
replaced with the contents of RAM bytes addresses 2 and
3. Then the CPU returns to its normal fetch and execute

216

operation. But the IAR has been replaced! So the next
instruction will be fetched from whatever address was in
RAM byte 2.
In other words, what the CPU had been doing is saved,
and the CPU is sent off to do something else. If at the
end of this new activity, the program puts RAM bytes 0
and 1 back into the IAR and Flags, the CPU will pick up
from exactly where it left off, before it was
interrupted.
This system is very useful for dealing with I/O
operations. Without interrupts, the program running in
the CPU would have to make sure to check all of the
devices on the I/O Bus on a regular basis. With
interrupts, the program can just do whatever it is
designed to do, and the program that deals with things
like keyboard input will be called automatically as
needed by the interrupt system.
We have not included this in our CPU because it would
just make our Control Section wiring diagram too big. It
would need to add the following: two more steps to the
stepper, wiring to do the above 8 steps in place of the
normal instruction cycle, paths for the Flags register
to get to and from the bus, a method of sending a binary
0, 1, 2 or 3 to MAR, and an instruction that restores
RAM bytes 0 and 1 to the IAR and Flags register.
And that is an Interrupt system. As far as the language
is concerned, the computer designers took an existing
verb, ‘interrupt,’ and used it in three ways: It is a
verb in “the keyboard interrupted the program,” it is an
adjective in “This is the Interrupt system,” and it is a
noun in “the CPU executed an interrupt.”

217

That’s All Folks
Yes, this is the end of our description of a computer.
This is all there is. Everything you see a computer do
is a long concatenation of these very simple operations,
the ADDing, NOTting, Shifting, ANDing, ORing, XORing of
bytes, Storing, Loading, Jumping and I/O operations,
via the execution of the instruction code from RAM. This
is what makes a computer a computer. This is the sum
total of the smarts in a computer. This is all the
thinking that a computer is capable of. It is a machine
that does exactly what it is designed to do, and nothing
more. Like a hammer, it is a tool devised by man to do
tasks defined by man. It does its task exactly as
designed. Also like a hammer, if it is thrown
indiscriminately it can do something unpredictable and
destructive.
The variety of things the computer can be made do is
limited only by the imagination and cleverness of the
people who create the programs for them to run. The
people who build the computers keep making them faster,
smaller, cheaper and more reliable.
When we think of a computer, we probably think of that
box that sits on a desk and has a keyboard, mouse,
screen and printer attached to it. But computers are
used in many places. There is a computer in your car
that controls the engine. There is a computer in your
cell phone. There is a computer in most cable or
satellite television boxes. The things that they all
have in common are that they all have a CPU and RAM. The
differences are all in the peripherals. A cell phone has
a small keyboard and screen, a microphone and a speaker,
and a two-way radio for peripherals. Your car has
various sensors and controls on the engine, and the
dials of the dashboard for peripherals. The cash
register in a fast food restaurant has a funny keyboard,
a small display screen and a small printer for receipts.
There are computers in some traffic lights that change
the lights based on the time of day and the amount of
traffic that crosses the sensors embedded in the
roadway. But the CPU and RAM make it a computer, the
peripherals can be very different.

218

For the rest of the book we will look at miscellaneous
subjects related to understanding how computers are
used, a few interesting words that are related to
computers, some of their frailties and a few other loose
ends.

219

Hardware and Software
You’ve heard of hardware. That word has been around for
a long time. There have been hardware stores for a
century or more. I think that a hardware store
originally sold things that were hard, like pots and
pans, screwdrivers, shovels, hammers, nails, plows, etc.
Perhaps ‘hardware’ meant things that were made out of
metal. Today, some hardware stores no longer sell pots
and pans, but they sell huge variety of hard things,
like bolts and lawnmowers, also lumber and a lot of soft
things too, like carpet, wallpaper, paint, etc. But
these soft things are not called software.
The word ‘software’ was invented somewhere in the early
days of the computer industry to differentiate the
computer itself from the state of the bits within it.
Software means the way the bits are set on or off in a
computer as opposed to the computer itself. Remember
that bits can be either on or off. The bit has a
location in space, it is made of something, it exists in
space, it can be seen. The bit is hardware. Whether the
bit is on or off is important, but it’s not a separate
part that you bolt into the computer, it is the thing in
the computer that is changeable, the thing that can be
molded, it is ‘soft’ in that it can change, but you
can’t pick it up in your hand all by itself. This thing
is called software.
Think of a blank videotape. Then record a movie on it.
What is the difference between the blank videotape and
the same videotape with a movie on it? It looks the
same, it weighs the same, you can’t see any difference
on the surface of the tape. That surface is coated with
very fine particles that can be magnetized. In the blank
tape, the entire surface of the tape is magnetized in
random directions. After recording the movie on the
tape, some little places on the tape are magnetized in
one direction and other little places are magnetized in
the other direction. Nothing is added to or taken away
from the tape, it’s just the way the magnetic particles
are magnetized. When you put the tape into a VCR it
plays a movie. The tape is hardware, the pattern of the
directions of magnetization on the tape is software.

220

In a computer, there are a great many bits. As we have
seen, a lot of bits have to be set in certain ways in
order to make the computer do something useful. The bits
in the computer are always there. If you want the
computer to do a certain thing, you set those bits on or
off according to the pattern that will make the computer
do what you want it to do. This pattern is called
software. It is not a physical thing, it is just the
pattern in which the bits are set.
So the difference between hardware and software isn’t
like metal versus rubber. Both metal and rubber are
hardware as far as the computer definition is concerned.
Hardware is something you can pick up, see, handle.
Software is the way the hardware is set. When you buy
software, it is recorded on something, usually some kind
of disk. The disk is hardware, the specific pattern
recorded on that disk is software. Another disk may look
just like it, but have completely different software
written on it.
Another way to see the difference between hardware and
software is how easy it is to send it across a distance.
If you have a vase that you want to send to your aunt
Millie for her birthday, you have to pack the vase in a
box and have a truck take it from your house to her
house. But if you want to give her the present of music,
you might go to the store, buy her a disk and mail it,
but you might also buy her a gift certificate on the
Internet, send her an e-mail, and have her download the
music. In that case, the music will get to her house
without a truck having to go there. The music will be
transported solely by the pattern of electricity that
comes over the Internet connection to her house.
Another way to see the difference between hardware and
software is how easy it is to make a copy of the item.
If you have a lawnmower, and want a second lawnmower,
there is no machine that will copy the lawnmower. You
could photograph the lawnmower, but you’d only have a
flat photograph of a lawnmower. You couldn’t mow any
lawns with the photo. To get a real second lawnmower,
you’d have to go back to the lawnmower factory and build
another one out of iron and plastic and rope and
whatever else lawnmowers are made out of. This is
hardware.

221

Software can be copied easily by machine. All you need
is something that can read the disk or whatever it is
recorded on, and something else to write it onto a new
disk. The new one will be just like the original, it
will do all the same things. If the original is your
favorite movie, the copy will also be your favorite
movie. If the original is a program that will prepare
your tax papers, so will the copy.
Software is not a physical thing, it is just how the
physical things are set.
By far the most commonly used definition of ‘software’
is to refer to a package of computer instruction code. I
think that the way it got this name is that once you
have built a device as versatile as a computer, there
are many different things that it can be made to do. But
when there are no instructions in it, it can’t do
anything. So the software is an absolutely necessary
part of a computer that is doing some task. It is a
vital part of the total machine, yet it isn’t like any
other part in the machine. You can’t weigh it or measure
it or pick it up with a pair of pliers. So it is part of
the ‘ware,’ but it isn’t hardware. The only thing left
to call it is ‘software.’

222

Programs
As mentioned earlier, a series of instructions in RAM
are called a program.
Programs come in many sizes. Generally, a program is a
piece of software that has everything needed to do a
specific task. A system would be something larger, made
up of several programs. A program might be made up of
several smaller parts known as ‘routines.’ Routines in
turn may be made up of sub-routines.
There are no hard and fast definitions that
differentiate between system, program, routine and sub-
routine. Program is the general term for all of them,
the only difference is their size and the way they are
used.
There is another distinction between two types of
programs that is not related to their size. Most home
and business computers have a number of programs
installed on them. Most of these programs are used to do
something that the owner wants to do. These are called
application programs because they are written to apply
the computer to a problem that needs to be solved. There
is one program on most computers that is not an
application. Its job is to deal with the computer itself
and to assist the application programs. This one program
that is not an application is called the Operating
System.

223

The Operating System
An “Operating System,” or “OS” for short, is a large
program that has many parts and several objectives.
Its first job is to get the computer up and running when
you first turn the computer on.
Another one of its jobs is to start and end application
programs and give each one time to run. It is the ‘boss’
of every other program on that computer. When more than
one program is in RAM, it is the operating system that
switches between them. It lets one program run for a
small fraction of a second, then another program, then
another program. If there are ten programs in RAM, and
each one gets to run for one hundredth of a second at a
time, each program would be able to execute millions of
instructions in that time, several times per second. It
would appear that all ten programs were running
simultaneously because each one gets to do something,
faster than the eye can see.
An Operating system also provides services to
application programs. When an application program needs
to read from, or write to the disk, or draw letters on
the screen, it does not have to do all of the
complicated I/O instructions necessary to accomplish the
task. The OS has a number of small routines that it
keeps in RAM at all times for such purposes.
All an application needs to do to use one of these
routines is to load up some information in the
registers, and then jump to the address of the proper OS
routine. Here’s an example of how it might be done. Lets
say you want to draw a character on the screen. First,
put the ASCII code of the desired character into R0.
Then put row and column numbers of where you want it to
appear on the screen into R1 and R2. And here’s the
tricky part: You put the address of the next instruction
of your application program, into R3. Now just jump to
the OS routine. The routine will take care of all of the
details of drawing the character on the screen, and then
its last instruction will be JMPR R3. Thus, these
routines can be ‘called’ from any application, and when
done, the routine will jump back to the next instruction

224

in the application that called it.
There are several reasons for having the OS do all of
the I/O functions. One is that it makes it easier to
write application programs, the programmer does not even
need to know how the peripherals actually work. Another
reason is that it would waste a lot of RAM if every
application had its own copy of all of the I/O routines.
One of the most important reasons is that the OS can
check to see whether the program should be allowed to do
what it is asking to do. This is part of the OS’s other
job of being the boss.
The heart of the OS is basically a loop of instructions
that asks the following questions: Do I need to input
anything? Do I need to output anything? Do I need to let
any program run? Then it starts over again. If the
answers to all of these questions is no, the CPU just
executes the instructions in this loop over and over,
millions of times per second. When there is something to
do, it jumps to the beginning of the program that takes
care of it, and when that is done, it jumps back to this
loop where the OS ‘waits’ for something else to do.
Here is a diagram of our larger RAM version, showing
what parts of RAM might be occupied by an Operating
System and several other programs.

225

226

Within each program’s RAM, there is all of the
instruction code that makes the program work. Each
program may be divided up into its own main loop, and
many routines that are used for the various tasks that
it needs to do. As mentioned, the OS also has routines
that can be called by other programs.
Each program also uses part of its ‘address space’ for
the data that it is working on. The calculator, for
example, needs to have a few bytes where it stores the
numbers that the user enters into it. Solitaire needs
some bytes that specify which cards are in which
positions. The word processor needs some RAM for all of
the ASCII codes that make up the document you are
working on. The OS also needs bytes where it can store
fonts, keep track of where application programs have
been loaded, receive the data that it reads from the
disk, and for many other purposes.
And so this is what goes on inside your average
computer. There are many different programs and data
areas in RAM. The OS jumps to a program, the program
jumps to a routine, the routine jumps to a sub-routine.
Each program works on its data or calculates something
or does an I/O operation. As each one finishes, it jumps
back to where it came from. The CPU executes one
instruction from one program at a time, and if they are
written intelligently, each program will get its job
done piece by piece, without interfering with the rest.
If our computer had included an ‘interrupt system’ like
we described a few chapters back, every time someone
pressed a key on the keyboard or moved the mouse, there
would be an interrupt that would call a part of the OS
that determines which I/O device caused the interrupt,
and then calls the proper routine to take care of
whatever it was. When that was done, the CPU would
continue on with the next instruction of whatever
program had been running when the interrupt happened.
This can all seem very complex, with so many millions
and billions of instructions being executed in the blink
of an eye. There are ways of organizing programs and
good programming practices that can make it much more
understandable. A study of these would simplify software
in the same manner that I hope this book has simplified

227

the hardware. But that would be the subject for another
entire book.

228

Languages
Writing programs is very hard to do when you’re just
writing ones and zeros, but that is the only code that
the CPU ‘understands.’
What is a language? A spoken language, such as English,
is a way to represent objects, actions and ideas with
sounds. A written language is a way to represent the
sounds of a spoken language with symbols on paper.
Sounds like another code, and a code representing a
code. We just can’t get away from these things!
Do you remember that shorthand we used when we were
looking at the CPU instruction code and the wiring in
the Control Section? Well, that is actually something
more than just a handy tool that was invented for this
book. It is a computer language. Here are a few lines of
it:
Instruction
Code

 Language Meaning

1000 rarb ADD RA,RB Add

1001 rarb SHR RA,RB Shift Right
1010 rarb SHL RA,RB Shift Left
1011 rarb NOT RA,RB Not

A computer language is a way to represent the
instruction code. Its purpose is to make it easier to
write computer programs.
In order to use this language, you write the program you
want with ASCII characters, and save it into a file.
Then you load a special program called a ‘compiler’ into
RAM and jump to its first instruction. The compiler will
read the ASCII file, translate each line into the
Instruction Code that it represents, and write all of
the Instruction Code bytes into a second file. The
second file may then be loaded into RAM, and when the
CPU jumps to its first instruction, the program you
wrote in ASCII will hopefully do what you intended it to
do.
Of course, when computers were first invented, all

229

programs had to be written directly in ones and zeros.
Then somebody got tired of the tedium of programming
that way, and decided to write the first compiler. Then
ever after, programs were written in this easier
language, and then translated into Instruction Code by
the compiler. With the original compiler, you could even
write a better compiler.
So in order for a computer language to exist, you need
two things, a set of words that make up the language
(another code,) and a compiler that compiles the written
language into computer instruction code.
The language that we have seen in this book has only
about 20 words in it. Each word correlates directly to
one of the instructions of which this computer is
capable. Each line you write results in one computer
instruction. When you write an 87 line program in this
language, the instruction code file that the compiler
generates will have 87 instructions in it.
Then someone invented a “higher level” language where
one line of the language could result in multiple
computer instructions. For example, our computer does
not have an instruction that does subtraction. But the
compiler could be designed so that it would recognize a
new word in the language like ‘SUB RA,RB’ and then
generate however many machine instructions were
necessary to make the subtraction happen. If you can
figure out how to do something fancy with 47
instructions, you can have a word in your language that
means that fancy thing.
Then someone invented an even higher level language
where the words that make up the language don’t even
resemble the CPU’s actual instructions. The compiler has
a lot more work to do, but still generates instruction
code that does the things that the words in that
language mean. A few lines from a higher level language
might look like this:

Balance = 2,000
Interest Rate = .034
Print “Hello Joe, your interest this year is: $”
Print Balance X Interest Rate

The compiler for this language would read this four-line
program, and generate a file that could easily contain

230

hundreds of bytes of instruction code. When that
instruction code was loaded into RAM and run, it would
print:

Hello Joe, your interest this year is: $68
Writing software in higher level languages can result in
getting a lot more done in a shorter amount of time, and
the programmer no longer needs to know exactly how the
computer actually works.
There are many computer languages. Some languages are
designed to do scientific work, some are designed for
business purposes, others are more general purpose.
Lower level languages are still the best for certain
purposes.

231

The File System
As we saw earlier, the way a disk actually works is
pretty foreign to most people who use a computer.
To make things easier, someone invented an idea called a
“file.” A file is supposed to be similar to the kind of
paper files that people use in offices. A paper file is
a sheet of cardboard folded in half and placed in a file
cabinet. This folder has a tab on it where you can write
some sort of name for the folder, and then you can put
one or many pieces of paper in the folder.
A computer file is a string of bytes that can be any
length, from one byte up to all of the bytes available
on the disk. A file also has a name. A disk may have
many files on it, each with its own name.
Of course, these files are just an idea. To make a file
system work, the operating system provides a bunch of
software that makes the disk appear to be like a filing
cabinet instead of having heads, tracks, sectors and
blocks of bytes.
This file system gives application programs an easy way
of using the disk. Applications can ask the OS to
create, read, write or erase something called a file.
All the application needs to know is the name of the
file. You open it, request bytes, send it bytes, make it
bigger or smaller, close the file.
The OS uses part of the disk to maintain a list of file
names, along with the length of each file and the disk
address (head, track, sector) of the first sector of the
data. If the file is smaller than a disk sector, that’s
all you need, but if the file is larger than one sector,
then there is also a list which contains as many disk-
type addresses as needed to hold the file.
The application program says create a file with the name
“letter to Jane.” Then the user types the letter to Jane
and saves it. The program tells the OS where the letter
is in RAM and how long it is, and the OS writes it to
disk in the proper sector or sectors and updates the
file length and any necessary lists of disk-type
addresses.

232

To use the file system, there will be some sort of rules
that the application program needs to follow. If you
want to write some bytes to the disk, you would need to
tell the OS the name of the file, the RAM address of the
bytes that you want to write, and how many bytes to
write. Typically, you would put all of this information
in a series of bytes somewhere in RAM, and then put the
RAM address of the first byte of this information in one
of the registers, and then execute a Jump instruction
that jumps to a routine within the Operating System that
writes files to the disk. All of the details are taken
care of by this routine, which is part of the OS.
If you ask the OS to look at your disk, it will show you
a list of all the file names, and usually their sizes
and the date and time when they were last written to.
You can store all sorts of things in files. Files
usually have names that are made up of two parts
separated by a period like “xxxx.yyy.” The part before
the period is some sort of a name like “letter to Jane,”
and the part after the dot is some sort of a type like
“doc” which is short for “document.” The part before the
period tells you something about what is in the file.
The part after the dot tells you what type of data is
contained in this file, in other words, what code it
uses.
The type of the file tells both you and the OS what code
the data in the file uses. In one popular operating
system “.txt” means text, which means that the file
contains ASCII. A “.bmp” means BitMaP, which is a
picture. A “.exe” means executable, which means it is a
program and therefore contains Instruction Code.
If you ask the OS what programs are available to
execute, it will show you a list of the files that end
with “.exe”. If you ask for a list of pictures that you
can look at, it will show you a list of files that end
with “.bmp”.
There are many possible file types, any program can
invent its own type, and use any code or combination of
codes.

233

Errors
The computer is a fairly complex machine that does a
series of simple things one after another very quickly.
What sorts of things could go wrong here?
In the early days of computing, when each gate in the
computer was relatively expensive to build, sometimes
there were components that actually had moving parts to
make electrical connections. Two pieces of metal had to
touch to make the electricity go to where the builders
wanted it to go. Sometimes when the machine stopped
working correctly, the fixit guy would look inside to
find out what was wrong, and he would find that a spider
had crawled inside the machine and had gotten itself
wedged in between two of these pieces of metal that were
supposed to touch each other. Then when one piece of
metal moved to touch the other, the spider was in the
way and they wouldn’t touch. So the electricity wouldn’t
get to where it needed to go, and the machine would not
operate correctly anymore. The fixit guy would remove
the bug, clean up the contacts, and report “There was a
bug in the computer.” And he literally meant a bug.
Over time, whenever a computer appeared to be operating
incorrectly, people would say that the computer had a
bug. There are two main classes of computer bugs:
hardware and software.
A hardware bug actually means that the computer is
broken. This could be as serious as you turn the
computer on, and it catches fire, to there is one byte
in the RAM where one bit is always off.
Now one bit in RAM that refuses to change may be a
problem or it may not. If the byte where that bit is
located somehow never gets used, then the computer will
work just fine. If that byte is part of a place where a
name is stored, then the name may get changed from “Joe”
to “Jod.” If that byte has some program instructions in
it, you may get an XOR instruction changed to a JMP
instruction. Then when the program gets to that
instruction, it will not do the XOR like it is supposed
to, but rather it will jump somewhere else and start
executing whatever is at the new location as though it

234

was a series of instructions. The contents of those
bytes will determine what happens next, but it will
almost certainly be as wrong as a train falling off its
track.
If a gate is broken in the stepper, for instance, so
that step 4 never comes on, then the computer will not
really be able to operate at all. It would still be able
to fetch instructions in steps 1, 2 and 3, but every
instruction would execute incorrectly. Certainly the
program would make a mess of things after ‘executing’
just a few instructions.
Software bugs can take many forms, but they are all
ultimately programmer mistakes. There are probably many
more ways to write a program incorrectly than correctly.
Some errors just create some kind of incorrect results,
and other errors cause the computer to “crash.”
One of my favorite stupid programmer stories is this:
Someone bought a car on credit. He got a coupon book
with the loan, one coupon to be sent in with each
payment. But when he made his first payment, he
accidentally used the last coupon in the book instead of
the first one. A few weeks later, he received a
computer-generated letter from the loan company saying,
“Thank you for paying off your loan in full, next time
you need a loan please use us again.” Obviously, the
program just checked the coupon number and if it was
equal to the highest number coupon in the book, jump to
the routine for a paid-in-full loan. It should have at
least checked the balance remaining on the loan before
deciding that it was paid off. This is a subtle error,
it might not be caught by the loan company until they
audited their books months later. The computer did
exactly what it was told to do, and most of the time it
was adequate, but the program was not written to
anticipate all of the situations that sometimes occur in
the real world.
One of the worst software bugs is getting stuck in a
loop. The program executes a series of instructions, and
then jumps back to the beginning of the series and
executes it over and over again. Of course, loops are
used all the time in programming, but they are used to
do something that has a finite number of similar steps.

235

It may repeat until 50 bytes have been moved somewhere,
or keep checking for the user to press a key on the
keyboard. But the computer will exit the loop at some
point and continue on to its next task. But if there is
some sort of programming error where there is a loop
that has no way out, the computer will appear to be
completely stuck. This is sometimes called being ‘hung,’
the whole computer may need to be turned off and
restarted to get out of the loop and back into useful
operation.
There are all sorts of errors that end up with the CPU
trying to execute something other than instruction code.
Lets say you have your program residing at address 10
through 150, and you have some ASCII data such as names
and phone numbers at addresses 151 through 210. If the
program is written incorrectly so that under certain
conditions it will jump to address 180, it will just
continue fetching and executing the bytes starting at
address 180. If 180-189 was filled with the ASCII for
“Jane Smith,” the “program” will now be executing
complete garbage, a series of bytes that were not
designed to be Instruction Code. It may put itself into
a loop, or jump back somewhere into the program, or
issue the command to erase the disk drive. And it will
be doing garbage at its usual high speed. If you looked
at the patterns in the bytes, you could see what it
would do, but it could be just about anything. If the
name at address 180 was “Bill Jones”, it would do
something completely different. Since it is not designed
to be useful, most likely it will just keep making a
bigger mess out of what is in memory until the computer
will have to be powered off to get it to stop.
Another type of error could occur if a program
accidentally wrote “John Smith” into the place where a
font was stored. In that case, every letter “E” that got

drawn on the screen thereafter would look like this: ‘
.’
The computer executes hundreds of millions of
instructions every second, and it only takes one wrong
instruction to bring the whole thing to a screeching
halt. Therefore, the subject of programming computers in
a manner that will be completely ‘bug free’ is something

236

that gets a lot of attention. Almost all programming is
done with languages, and the compilers for these
languages are designed to generate Instruction Code that
avoids the most serious types of errors, and to warn the
programmer if certain good programming practices are
violated. Still, compilers can have errors, and they
will never be able to spot an error like the one above
with the car loan.
As you can see, the computer and its software are pretty
fragile things. Every gate has to work every time, and
every instruction that gets executed has to be correct.
When you consider all of the things that could go wrong,
the high percentage of things that normally go right is
actually quite impressive.

237

Computer Diseases?
Another place where human characteristics get assigned
to computers is something called a computer virus. This
implies that computers can come down with a disease and
get sick. Are they going to start coughing and sneezing?
Will they catch a cold or the chicken pox? What exactly
is a computer virus?
A computer virus is a program written by someone who
wants to do something bad to you and your computer. It
is a program that will do some sort of mischief to your
computer when it runs. The motivation of people who
write virus programs ranges from the simple technical
challenge of seeing whether one is capable of doing it,
to a desire to bring down the economy of the whole
world. In any case, the people who do such things do not
have your best interests in mind.
How does a computer ‘catch’ a virus? A virus program has
to be placed in your RAM, and your computer has to jump
to the virus program and run it. When it runs, it
locates a file that is already on your hard disk, that
contains a program that gets run on a regular basis by
your computer, like some part of the operating system.
After the virus program locates this file, it copies the
virus program to the end of this file, and inserts a
jump instruction at the beginning of the file that
causes a jump to where the virus program is. Now your
computer has a virus.
When a computer with a virus is running, it does all of
the things it is supposed to do, but whenever it runs
the program that contains the virus, the inserted jump
instruction causes the virus program to be run instead.
Now the virus usually will do something simple, like
check for a predetermined date, and if it is not a
match, then the virus program will jump back to the
beginning of the file where the operating system program
still exists.
Thus, your computer will appear totally normal, there
are just a few extra instructions being executed during
its regular operations. The virus is considered dormant
at this point. But when that date arrives, and the virus

238

‘decides’ to do whatever is in the rest of its program,
it can be anything. When the virus program is running,
it can do whatever mischief the person who wrote it
could think of. It can erase files on your disk, or send
them somewhere else via the internet. One humorous virus
would, every once in a while, make the letters on the
screen appear to come loose and fall into a pile at the
bottom of the screen.
Here’s an example of how to catch a virus. Let’s say
that you have a friend who finds a funny movie on the
Internet. It makes him laugh, and he thinks that you
will enjoy it too, so he emails the movie file to you.
You receive the movie file and play it, and you do enjoy
it.
There are two different things that could have occurred
here. If your friend sent you a file named “funny.mov,”
and your OS includes a program that plays ‘.mov’ files,
then the OS will load that program into RAM, and that
program will read the pictures in the “funny.mov” file
and display them on your screen. This is fine, the
program that ran was something that was already on your
computer. The “funny.mov” file just provided a series of
pictures that were displayed on your screen.
But if your friend sent you a file named “funny.exe,”
then when you ask the OS to play the movie, it will load
“funny.exe” into RAM and jump to its first instruction.
Now you have a program running in your computer that
came from somewhere else. If it is a virus program, it
will probably play the movie for you so that you don’t
suspect anything, but it can do anything else that it
wants, to the files on your disk while you are watching
the movie. It will probably install itself and go into a
dormant state for days or weeks, and you won’t even know
that your computer is ‘infected.’ But sooner or later it
will come alive and do whatever damage it was designed
to do.
This sort of malicious program is called a virus because
the way it works is similar to the way that real viruses
infect living things. A real virus is a thing that is
smaller than a one celled animal. It doesn’t quite
qualify as being alive because the virus by itself
cannot reproduce. They do reproduce, however, by

239

invading a cell of something that is alive. Once in the
cell, the virus uses the mechanisms of that cell to make
copies of itself, which can then go on and infect other
cells.
The computer virus also cannot reproduce or do anything
else by itself. It needs to get into a computer, and
somehow get itself executed one time by that CPU. When
it runs that first time, it inserts itself somewhere
into the operating system so that it will thereafter get
executed on a regular basis. Those instructions will do
whatever damage they are designed to do to the computer
on which they are running, and they will also usually do
something that is designed to spread the virus to other
computers.

240

Firmware
Of course, RAM is an essential part of any computer. The
ability to write bytes into RAM, and read them back out
again is an integral part of how the machine works.
But in some computers, there are sections of the RAM
that only get written to when the computer starts up,
and thereafter these sections remain unchanged as the
computer operates. This could be true in any computer
that always runs the same program. Perhaps half of the
RAM is used to contain the program, and the other half
of the RAM is used to contain the data that the program
is working on. The half with the program has to be
loaded at some point, but after that, the CPU only has
to read the bytes of the program in order to fetch and
execute them.
When you have this sort of situation, you can build half
of your computer’s RAM the normal way, and with the
other half, you skip the NAND gates, and just wire each
bit directly to an on or an off in the pattern of your
program.
Of course, you can’t write into the pre-wired RAM, but
you can read from it just fine. This type of RAM was
given the name Read Only Memory, or ROM for short. You
use it the same way you use RAM, but you only read from
it.
There are two advantages to ROM. In the early days of
computers, when RAM was very expensive, ROM was a lot
less expensive than RAM.
The other advantage is that you no longer have to load
the program into RAM when you first turn the computer
on. It is already there in ROM, ready to be executed by
the CPU.
The point here is a new word. Since software was named
‘soft’ because it is changeable, when it comes to ROM,
you still have a pattern in the bits, but they’re not so
soft anymore. You can’t write into a ROM, you can’t
change the bits. And so this type of memory came to be
known as ‘firmware.’ It is software that is permanently
written into hardware.

241

But that isn’t the end of the story. The ROM described
above had to be built that way at the factory. Over the
years, this idea was improved and made easier to use.
The next advance was when someone had the bright idea of
making ROM where every bit was set on at the factory,
but there was a way of writing to it with a lot of power
that could burn out individual connections, changing
individual bits to an off. Thus this ROM could be
programmed after leaving the factory. This was called
‘Programmable ROM’ or ‘PROM’ for short.
Then someone figured out how to make a PROM that would
repair all of those broken connections if it were
exposed to ultraviolet light for a half an hour. This
was called an ‘Erasable PROM’, or ‘EPROM’ for short.
Then someone figured out how to build an EPROM that
could be erased by using extra power on a special wire
built into the EPROM. This was called ‘Electrically
Erasable PROM’, or ‘EEPROM’ for short. One particular
type of EEPROM has the name ‘Flash memory.’
So there is RAM, ROM, PROM, EPROM, EEPROM and Flash.
These are all types of computer memory. The thing they
have in common is that they all allow random access.
They all work the same way when it comes to addressing
bytes and reading out the data that is in them. The big
difference is that RAM loses its settings when the power
goes off. When the power comes back on, RAM is full of
all zeros. The rest of them all still have their data
after power off and back on.
You may ask then, “Why don’t computers use EEPROM for
their RAM? Then the program would stay in RAM when the
computer was off.” The answer is that it takes much
longer to write into EEPROM than RAM. It would slow the
computer down tremendously. If someone figures out how
to make an EEPROM that is as fast and as cheap and uses
the same or less power as RAM, I’m sure it will be done.
By the way, the word ROM has also come to be used to
mean any type of storage that is permanently set, such
as a pre recorded disk, as in ‘CD ROM,’ but its original
definition only applied to something that worked just
like RAM.

242

Boots
What do boots have to do with computers? Well, there is
an old phrase that goes “pull yourself up by your own
bootstraps.” It is kind of a joke, it literally refers
to the straps that are sewn into many boots that are
used to help pull the boots onto your feet. The joke is
that if you are wearing such a pair of boots, and want
to get up off the ground, instead of getting a ladder or
climbing a rope, you can get yourself off the ground by
simply pulling hard enough on those bootstraps. Of
course this would only work in a cartoon, but the phrase
has come to mean doing something when there is no
apparent way to do it, or doing something without the
tools that would normally be used, or accomplishing
something by yourself without help from anyone else.
In a computer, there is a problem that is similar to
needing to get off the ground and having no tools
available to accomplish it. When a computer is
operating, the memory is full of programs that are doing
something, and when the operator of the computer enters
a command to start another program, the operating system
locates the program on disk, loads it into memory, and
jumps to the first instruction of the program. Now that
program is running.
But when you first turn on a computer, how do you get
the operating system into memory? It takes a program
running in memory to tell the disk drive to send over
some instruction code, and the program needs to write
that code into memory at an appropriate place, and then
jump to its first instruction to get the new program
running. But when you turn the computer on, every byte
in memory is all zeros. There are no instructions in
memory at all. This is the impossible situation, you
need a program in memory to get a program in memory, but
there is nothing there. So in order for the computer to
get going in the first place, the computer has to do
something impossible. It has to pull itself up by its
bootstraps!
A long time ago, in the early days of computers, the
machine had switches and push buttons on the front panel
that allowed the operator to enter bytes of data

243

directly into the registers, and from there, into RAM.
You could manually enter a short program this way, and
start it running. This program, called a “bootstrap
loader,” would be the smallest possible program you
could write that would instruct the computer to read
bytes from a peripheral, store them in RAM, and then
jump to the first instruction. When the bootstrap loader
executes, it loads a much larger program into memory,
such as the beginnings of an operating system, and then
the computer will become usable.
Nowadays, there are much easier ways of loading the
first program into the computer, in fact it happens
automatically immediately after the computer gets turned
on. But this process still happens, and the first step
is called “booting” or “booting up” and it only means
getting the first program into memory and beginning to
execute it.
The most common solution to this problem has three
parts. First, the IAR is designed so that when the power
is first turned on, instead of all of its bits being
zero, its last bit will be zero, but the rest of its
bits will be ones. Thus for our little computer, the
first instruction to be fetched will be at address 1111
1110. Second, something like the last 32 bytes of the
RAM (235-256) will be ROM instead, hardwired with a
simple program that accesses the disk drive, selects
head 0, track 0, sector 0, reads this sector into RAM,
and then jumps to the first byte of it. The third part
then, had better be that there is a program written on
that first sector of the disk. This sector, by the way,
is called the ‘boot record.’
This word ‘boot’ has become a verb in computer talk. It
means to load a program into RAM where there are no
programs. Sometimes people use it to mean loading any
program into RAM, but its original meaning only applied
to loading the first program into an otherwise blank
RAM.

244

Digital vs. Analog
You’ve no doubt heard these terms bandied about. It
seems that anything associated with computers is
digital, and everything else is not. But that’s not
quite close enough to the truth.
What they mean is quite simple, but where they came from
and how they ended up in their current usage is not so
straightforward.
The word ‘digital’ comes from digit, which means fingers
and toes in some ancient language, and since fingers and
toes have been used for counting, digital means having
to do with numbers. Today, the individual symbols that
we use to write numbers (0, 1, 2, 3, etc.) are called
digits. In the computer, we represent numbers with bits
and bytes. One of the qualities of bits and bytes is
their unambiguous nature. A bit is either on or off;
there is no gray area in between. A byte is always in
one of its 256 states; there is no state between two
numbers like 123 and 124. The fact that these states
change in steps is what we are referring to when we say
digital.
The word ‘analog’ comes from the same place as ‘analogy’
and ‘analogous,’ thus it has to do with the similarity
between two things. In the real world, most things
change gradually and continuously, not in steps. A voice
can be a shout or a whisper or absolutely anywhere in
between. When a telephone converts a voice into an
electrical equivalent so that it can travel through a
wire to another telephone, that electricity can also
vary everywhere between being fully on and fully off.
Sound and electricity are two very different things, but
the essence of the voice has been duplicated with
electricity. Since they are similar in that respect, we
can say that the electrical pattern is an ‘analog’ of
the voice. Although the meaning of ‘analog’ comes from
this ‘similarity’ factor, when you make an analog, you
are usually making an analog of something that is
continuously variable. This idea of something being
continuously variable has come to be the definition of
analog when you are comparing digital and analog.
Something that is analog can be anywhere within the

245

entirety of some range, there are no steps.
Digital means change by steps and analog means change in
a smooth continuous manner. Another way to say it is
that digital means that the elements that make up a
whole come from a finite number of choices, whereas
analog means that a thing is made of parts that can be
selected from an unlimited number of choices. A few non-
computer examples may help to clarify this.
If you have a platform that is three feet above the
floor, you can either build stairs for people to climb
up to it, or a ramp. On the ramp, you can climb to any
level between the floor and the platform; on the stairs,
you only have as many choices as there are steps. The
ramp is analog, the stairs are digital.
Let’s say that you want to build a walkway in your
garden. You have a choice of making the walkway out of
concrete or out of bricks. If the bricks are three
inches wide, then you can make a brick walk that is 30
inches wide, or 33 inches wide, but not 31 or 32. If you
make the walk out of concrete, you can pour it to any
width you want. The bricks are digital, the concrete is
analog.
If you have an old book and an old oil painting, and you
want to make a copy of each, you will have a much easier
time making a copy of the book. Even if the pages of the
book are yellowed, and the corners are dog-eared, and
there are dirt smudges and worm holes inside, as long as
you can read every letter in the book, you could re-type
the entire text, exactly as the author intended it. With
the oil painting, the original colors may have faded and
are obscured by dirt. The exact placement of each
bristle in each brush stroke, the thickness of the paint
at every spot, the way adjacent colors mix, could all be
copied in great detail, but there would inevitably be
some slight differences. Each letter in the book comes
from a list of a specific number of possibilities; the
variations of paint colors and their positions on the
canvas are limitless. The book is digital, the painting
is analog.
So there you have the difference between analog and
digital. The world around us is mostly analog. Most old
technologies were analog, like the telephone,

246

phonograph, radio, television, tape recorders and
videocassettes. Oddly enough though, one of the oldest
devices, the telegraph, was digital. Now that digital
technology has become highly developed and inexpensive,
the analog devices are being replaced one by one with
digital versions that accomplish the same things.
Sound is an analog thing. An old fashioned telephone is
an analog machine that converts analog sound into an
electrical pattern that is an analog of the sound, which
then travels through a wire to another phone. A new
digital telephone takes the analog sound, and converts
it into a digital code. Then the digital code travels to
another digital phone where the digital code is
converted back into analog sound.
Why would anyone go to the trouble of inventing a
digital phone when the analog phone worked just fine?
The answer, of course, is that although the analog phone
worked, it was not perfect. When an analog electrical
pattern travels over long distances, many things can
happen to it along the way. It gets smaller and smaller
as it travels, so it has to be amplified, which
introduces noise, and when it gets close to other
electrical equipment, some of the pattern from the other
equipment can get mixed in to the conversation. The
farther the sound goes, the more noise and distortion
are introduced. Every change to the analog of your voice
becomes a part of the sound that comes out at the other
end.
Enter digital technology to the rescue. When you send a
digital code over long distances, the individual bits
are subjected to the same types of distortion and noise,
and they do change slightly. However, it doesn’t matter
if a bit is only 97% on instead of 100%. A gate’s input
only needs to ‘know’ whether the bit is on or off, it
has to ‘decide’ between those two choices only. As long
as a bit is still more than half way on, the gate that
it goes into will act in exactly the same way as if the
bit had been fully on. Therefore, the digital pattern at
the end is just as good as it was at the beginning, and
when it is converted back to analog, there is no noise
or distortion at all, it sounds like the person is right
next-door.

247

There are advantages and disadvantages to each method,
but in general, the benefits of digital technology far
outweigh its shortcomings.
Probably the biggest advantage of digital has to do with
the making of copies. When you make a copy of something
like a vinyl record, you could record it to a tape
recorder, or I guess you could even get all of the
equipment to cut a new vinyl record. But there will be
some degree of difference between the original and the
copy. In the first place, all machinery has accuracy
limitations. A copy of any physical object can be very
close to the original, but never quite exact. Second, if
there are any scratches or particles of dust on the
original, the copy will then have duplicates of these
defects. Third, friction between the record and the
needle actually wears away a tiny amount of vinyl every
time you play it. If you use a tape recorder, there is
always a low level of ‘hiss’ added to the sound. If you
make a copy of a copy, and a copy of that, etc. the
changes will get larger and larger at each stage.
When it comes to something that is digital, as long as
every bit that was on in the original is also on in the
copy, we get an exact copy every time. You can make a
copy of the copy, and a copy of that, etc., and every
one of them will be exactly the same as the original.
Digital is definitely the way to go if you want to be
able to make an unlimited number of copies and preserve
something for all time.
The computer and peripherals we have built are entirely
digital so far. And if all we ever wanted to do with
them were digital things such as arithmetic and written
language, we could leave it that way. However, if we
want our computer to play music and work with color
photographs, there is one more thing we need to look at.

248

I Lied – Sort of
There is one piece of hardware in a computer that is not
made completely out of NAND gates. This thing is not
really necessary to make a computer a computer, but most
computers have a few of them. They are used to change
from something that is analog to something that is
digital, or digital to analog.
Human eyes and ears respond to analog things. Things
that we hear can be loud or soft, things that we see can
be bright or dark and be any of a multitude of colors.
The computer display screen that we described above had
320 x 200 or 64,000 pixels. But each pixel only had one
bit to tell it what to do, to be on or off. This is fine
for displaying written language on the screen, or it
could be used to make line drawings, anything that only
has two levels of brightness. But we have all seen
photographs on computer screens.
First of all, there needs to be a way to put different
colors on the screen. If you get out a magnifying glass
and look at a color computer or television screen, you
will see that the screen is actually made up of little
dots of three different colors, blue, red, and green.
Each pixel has three parts to it, one for each color.
When the display adapter scans the screen, it selects
all three colors of each pixel at the same time.
For a computer to have a color screen, it needs to have
three bits for each pixel, so it would have to have
three times the RAM in order to be able to control the
three colors in each pixel individually. With three
bits, each color could be fully on or off, and each
pixel would therefore have eight possible states: black,
green, red, blue, green and red (yellow,) green and blue
(cyan,) blue and red (magenta) and green, blue and red
(white.)
But this is still not enough to display a photograph. To
do that, we need to be able to control the brightness of
each color throughout the range between fully on and
fully off. To do this, we need a new type of part that
we will describe shortly, and we need more bits in the
display RAM. Instead of one bit for each color in each

249

pixel, we could have a whole byte for each color in each
pixel. That’s three bytes per pixel, for a total of
192,000 bytes of RAM just for this small display screen.
With these bytes, using the binary number code, you
could specify 256 levels of brightness for each color in
each pixel. This would amount to 16,777,216 different
states (or colors) for each pixel. This is enough
variety to display a reasonably good-looking photograph.
In order to make this work – a number specifying 256
different levels of brightness – you need a thing called
a “digital to analog converter” or “DAC” for short. A
DAC has eight digital inputs, and one analog output. The
way it works is that it is wired up to treat the input
as a binary number, and the output has 256 levels
between off and on. The output has 256 gradations
between off and on, and it goes to the level that the
input number specifies. If the input is a 128, the
output will be halfway on. For a 64 the output will be
one quarter on. For 0, the output will be fully off.

In order to make this color screen work, the display
adapter needs to access three bytes at a time, connect
them to three DACs, and connect the outputs of the DACs
to the three colors in the current pixel being painted.
That’s how a color screen works.

When we defined ‘analog’ in the last chapter, we said

250

that it was something that was continuously variable
from fully off to fully on. But our DAC really only has
256 different levels at its ‘analog’ output. It’s a lot
closer to being analog than a bit, but it still has
steps. What the computer is doing is approximating an
analog thing in steps small enough to fool the intended
audience. When it comes to the eye, 256 different levels
of brightness is sufficient.
If something requires smaller steps to fool the intended
audience, you can make a DAC that has 16 bits on the
digital side. Thus you can present the digital input
with a number anywhere from 0 to 65535. The analog side
can still only vary from fully off to fully on, but the
size of the steps will be much smaller since there are
now 65536 of them.
When it comes to the ear, it can hear very small
differences, and so a 16 bit DAC is required for high
quality sound.
All sounds, from music to speech to thunder crashes are
vibrations of the air. They vary in how fast the air
vibrates, and in exactly how it vibrates. The human ear
can hear vibrations from about 20 Hz at the low end to
20,000 Hz (20 kHz) at the high end, so this is the range
of vibrations that computers are designed to deal with.
For any electronic machine to make sounds, there is a
device called a speaker. All that a speaker does is move
back and forth in the air, making the air vibrate. If it
makes the air vibrate in precisely the same way as the
original thing that was recorded, it will sound just
like the original.
In order to store a sound in a computer, the position of
the speaker is divided into 65536 possible positions.
Then a second is divided into 44,100 parts. At each one
of those parts of a second, the desired position of the
speaker is stored as a two-byte number. This is enough
information to reproduce sound with very high quality.
To play top quality stereo music, a computer would need
a ‘sound peripheral.’ This would have two 16 bit DACs
with their analog outputs connected to speakers. It
would also have its own clock that ticks at 44,100 Hz.
At each tick, it would get the next two two-byte
numbers, and connect them to the digital side of the

251

DACs.
As far as speed goes, this would be 176,400 bytes per
second. Certainly that is fast, but remember that our
computer clock ticks a billion times per second. That
means that the computer can send four bytes to the sound
peripheral, and go off and execute about 4000
instructions on some other task before it needs to send
the next four.

For going the other way, there is an “Analog to Digital
Converter,” or “ADC” for short. This is used to convert
the sound from a microphone into a series of bytes, or
for a camera to convert a picture into a series of
bytes. The input has one wire that can be anywhere from
all the way off to all the way on. The ADC makes its
outputs into a number from 0-255 for an 8-bit ADC or
from 0-65,535 for a 16-bit ADC. This number represents
how much the input is on or off. Half on is 128 or
32,768, one quarter on is 64 or 16,384, etc. This
process is just the reverse of what a DAC does.

DACs and ADCs are not made out of NAND gates, they have
electronic parts like radios have. How they do what they
do is not a proper subject for this book. So maybe I
lied when I said that everything in a computer is made
out of NAND gates? Well, not really, because DACs and
ADCs are only used in certain types of peripherals, not

252

in the computer itself.

253

Full Disclosure
We have built a very small computer here. It is about
the smallest computer that could be invented that does
everything necessary to be worthy of the name computer.
I don’t think that anyone has built such a small
computer since about 1952, and no one has ever built
this exact computer in the real world.
If a real computer designer ever read this book, I’m
sure he’d be pulling his hair out over all of the
opportunities that have been missed here to make a
better machine. But again, the goal has been to
illustrate computer principles as simply as possible.
This is an eight-bit computer. That means that the
registers in the processor are eight bits, the bus is
eight bits, and in this machine, even the Memory Address
Register is eight bits.
With most of the computers that actually get built,
while the individual bytes in RAM remain 8 bits,
everything else is expanded to 16 bits, 32 bits or 64
bits or a combination of these in different parts of the
machine.
Our RAM only has 256 bytes, which is ridiculously small,
but that’s all you can have with an eight-bit Memory
Address Register. If you use 16 bits, you can have
65,536 bytes of RAM (that’s 64kb), if you use 24 bits
you can have 16mb, if you use 32 bits you can have 4
gigabytes of RAM.
Real computers have things that this one does not, but
they are not capable of doing things that this computer
cannot do.
In our computer, if you want to shift a byte three bits
to the left, you would put three shift left instructions
in your program. In most real computers, they have
shifters that will shift any number of bits in one
instruction. But the result is the same, your byte ends
up looking the same in either case, the real computer
just gets the job done faster.
In our computer, the adder can add two eight-bit
numbers. If you want to add 16 bit numbers, you have to

254

employ some software to do it. In most computers, the
adder can add 16 or 32 bit numbers in one instruction.
Again, the results are the same, one is just faster than
the other.
The stepper in our computer is a simplification of
something that most computers have, called a ‘state
machine.’ State machines provide steps, but start the
next instruction as soon as possible, do what is
necessary for an interrupt system, can create more
complex instructions, etc. Since all we needed was six
consecutive steps, we built a simpler thing and just
made up the term ‘stepper.’
So yes, our computer is a simple, small, relatively slow
computer, but it can do everything that more complicated
machines can do. The things that make a bigger machine
bigger, are designed to get the job done faster, do it
in fewer clock cycles, do the same task with fewer
instructions, operate on several bytes at the same time.
But the nature of what the machines do is exactly the
same. Every task they can do comes down to shifting,
ANDing, ORing, XORing, ADDing and NOTing bytes. There
are no other fancy types of operations that have been
left out of this book.
In a bigger machine, you can do addition, subtraction,
multiplication and division in a single instruction.
That is because they have huge numbers of gates arranged
into things like a ‘hardware multiplier.’ There is no
reason to show you the details of how you construct one
of these, it is a very complicated job for the few
people who need to build one. It is understandable, and
it all ultimately comes down to NAND gates just like
everything else. But we have seen how to do all the math
operations there are with just an adder, shifter, NOT
gates and some software. The hardware multiplier gets
there faster, but the results are exactly the same.
Bigger machines have more registers, the registers are
each multiple bytes, they have adders that can add three
numbers at the same time, but still the instructions
come down to the same simple operations. Your
understanding of computers is not small because we have
looked at a small computer.

255

Philosophy
Why do we have a chapter called “Philosophy” in a book
about computers? The only thing in this book that even
comes close to being a philosophical question is its
title, “But How do it Know?” We will attempt to answer
this question a little later on.
This book has been about the computers that we have
today. But what about the future? As computers and
software continue to advance, how soon if ever, will the
day come when there are walking talking computerized
robots that look and act just like people? Will the day
come when we have to decide whether or not to give these
robots the same legal rights as people? Will computers
eventually take over the world and replace people
altogether?
To answer these sorts of questions, people often refer
to a major question that has been outstanding in the
field of philosophy for many years.
The question is, whether man is composed solely of the
structural body that we can see and dissect, or whether
there is an integral spiritual component to every human
being which accounts for the qualities of consciousness,
love, honor, happiness, pain, etc.
That question is far beyond the scope of this book, and
it remains unconvincingly answered despite many books
arguing each viewpoint. There are people in the sciences
who say that we are on track to building conscious
computers, and it will happen. There are people in the
humanities who say that it is impossible because you
can’t manufacture a spirit. Each side has been unable to
sway the other.
If we define the brain as that funny looking chunk of
gray meat enclosed by the skull, and define the mind as
whatever it is that is responsible for consciousness,
memory, creativity, thinking, and everything else that
we notice going on in our heads, then we can restate the
big philosophic question as: “Are the brain and the mind
one and the same thing?”
Then when it comes to the question about building a
convincing human robot, there would be two

256

possibilities.
If the brain and the mind are the same thing, you might
not be able to build a synthetic person today, but as
time went on, eventually you could understand every
structure and function in the brain, and build something
of equal complexity that would generate true
consciousness, and that really should act just like any
other person.
If the brain and the mind are not the same thing, then
building a robot buddy will always be about simulating
humanity, not building something of equal quality and
value.
Restating the question doesn’t make it any easier to
answer, but this idea of separating what we know about
minds from what we know about brains may be useful.
Early on, we said that we were going to show how
computers work so that we could see what they were
capable of doing, and also what they were not capable of
doing. We are going to take what we know about brains
and what we know about minds and compare each
individually to our new knowledge about computers. In
doing so we can look for differences and similarities,
and we may be able to answer a few less controversial
questions.

Computers do certain things with great ease, such as
adding up columns of numbers. A computer can do millions
of additions in a single second. The mind can barely
remember two numbers at the same time, never mind adding
them up without a pencil and paper.

The mind seems to have the ability to look at and
consider relatively large amounts of data at the same
time. When I think of my favorite cat, I can re-
experience seeing what he looks like, hearing the sounds
of his purring and mewing, feeling the softness of his
fur and his weight when picked up. These are some of the
ways that I know my pet.
What would it mean for our computer to think about a
cat? It could have pictures of the cat and sounds of the
cat encoded in files on a spinning disk or in RAM. Is

257

that thinking? If you ran the bytes of these files one
by one through the ALU, would that be thinking? If you
put the picture on the screen, would that be thinking?
If you played the sounds to the speakers, would that be
thinking?
The sounds and pictures encoded in the computer are just
byte patterns sitting where they are. They don’t look
like anything or sound like anything unless they are
sent to the peripherals for which they were designed.
And if they are sent to the screen and speakers, the
computer doesn’t see them or hear them. Of course, your
computer could have a camera pointing at the screen, and
a microphone listening to the sounds, but the computer
still wouldn’t see a picture or hear a sound, it would
just collect more strings of bytes very similar to the
ones sent to the screen and speakers in the first place.
There could be programs that perform mathematical
operations on the picture files in order to discover
patterns, and store the results of these calculations in
other files. There could be files that relate one
picture file to other similar picture files, and
pictures to sounds, etc., creating more files.
But no matter how much programming is applied to the
picture files, there is something that the mind can do
that the computer simply doesn’t have any facility for.
The mind can consider the whole of some thing all at the
same time. You can think of the whole of the cat all at
once. Its sort of like the difference between the movie
film and the TV screen. The movie film has whole
pictures, the TV screen only has one pixel at a time.
You could say that your mind works so quickly that you
don’t notice the details, it gets integrated into a
whole just like the pixels get integrated into an entire
picture. But what does the integrating? And when it’s
integrated, what is it and where is it? And what looks
at the integrated whole?
We’ve just seen everything that’s in a computer. The
computer moves one byte at a time over the bus. The
fanciest thing it does is to add two bytes into one.
Everything else it ‘does’ amounts to nothing more than
the simple warehousing of bytes. A stored byte doesn’t
do anything beyond maintaining its own current setting.

258

A computer just doesn’t have any facilities that
integrate the elements of a picture into anything else,
nowhere to store that something else, and nothing with
which to look at it.
I’m not saying that something couldn’t be built that
would perform these functions, I’m just saying that
computers as we know them today don’t currently include
any such device.

Here is another question. If a brain works like a
computer, then it needs to have a program for the CPU to
run. Where would this program come from?
Although the brain has trillions of cells, the entire
human body starts with one fertilized egg cell. So any
program that the brain has, would have to be present in
this single cell, presumably in the DNA.
Scientists have now decoded the entire DNA sequence of
humans. DNA is interesting in that it is a long string
of only four types of things. It’s digital! A lot of the
pieces of this string are used for making chemical
reactions take place to make proteins, etc. but the
majority of it is called ‘junk DNA’ because no one knows
what its purpose is. But even if you consider that the
entirety of the DNA is devoted to computer software,
then there could be about a billion instructions in this
program. Now that’s a lot of software, but the average
home computer probably has that much software loaded
onto it’s hard drive, and that wouldn’t be anywhere near
enough to run a human being.
Some have said that the human computer programs itself.
As a programmer myself, I just can’t imagine how this
would work. While it’s true that a program can
accumulate data and modify the way it works based on the
collected data, this is not the same thing as writing a
new program. If someone ever writes this program that
can write any new needed program, there will be a huge
number of computer programmers put out of work forever.

Then there are the kinds of errors that computers make
versus the kind that people make. If a computer gets
stuck in a loop, it appears to have stopped completely.

259

Have you ever seen a person walking down the street
suddenly stop working? All functions just cease. The
person would just fall down until somehow his computer
re-booted. People do collapse from time to time, but it
is usually because some other part broke, like having a
heart attack, and you can see the person recognize the
pain as it takes them down. But if the human computer
got stuck in a loop, there would be an instant loss of
consciousness and the body would just fall completely
limp with no struggle. I have never seen that, but if
the brain operated just like a computer, you would
expect to see it on a fairly regular basis.

Then there is the matter of speed. As we have seen, a
simple computer can do a billion things in a second.
When it comes to the brain, it has nerves that have some
similarity to the wires in computers. Nerves can also
carry electricity from place to place. In a computer,
wires come out of gates and go into other gates. In the
brain, nerves are connected together by “synapses.”
These synapses are spaces between nerves where the
electricity in one nerve creates a chemical reaction,
which then causes the next nerve to create its own
electricity. These chemical reactions are painfully
slow.
No one has shown that these nerves are connected up
anything like the wires in a computer, but their lack of
speed makes it very unlikely that it would do much good
even if the connections were similar. After the
electricity travels quickly through the nerve cell, it
reaches the synapse, where the chemical reaction takes
about one five hundredth of a second to complete. That
means that our simple computer built out of NAND gates
could do two million things in the same time that only
one thing could be done by a computer built out of
nerves and synapses.

Another area where the difference between the mind and
computers is quite obvious, is in the area of
recognizing faces. The mind is very good at it. If you
walk into a party with fifty people present, you will
know in a matter of seconds whether you are among a

260

group of friends or of strangers. A lot of research has
been done into how people accomplish this feat, and a
lot of very interesting information has been uncovered.
There is also a lot of speculation, and there are many
fascinating theories about the underlying principles and
mechanisms. But the complete and exact structures and
functions have not been uncovered.
If you give a computer a picture file of a person, and
then give it the same file again, it can compare the two
files byte by byte and see that each byte in one file is
exactly equal to the corresponding byte in the other
file. But if you give the computer two pictures of the
same person that were taken at different times, or from
different angles, or with different lighting, or at
different ages, then the bytes of the two files will not
match up byte by byte. For the computer to determine
that these two files represent the same person is a huge
task. It has to run very complex programs that perform
advanced mathematical functions on the files to find
patterns in them, then figure out what those patterns
might look like from different angles, then compare
those things to every other face it has ever stored on
its disk, pick the closest match, then determine if it’s
close enough to be the person or just someone that looks
similar.
The point is that computers have a method of dealing
with pictures based on the principles on which computers
work. Using these principles alone has not yet yielded
computers or software that can recognize a face with
anywhere near the speed and accuracy of any ordinary
person.
Voice recognition by computers is another technology
that has come a long way, but has much further to go to
rival what the mind does easily.

So in comparing a computer to a brain, it just doesn’t
look very likely that they operate on the same
principles. The brain is very slow, there isn’t any
place to get the software to run it, and we don’t see
the types of problems we would expect with computer
software errors.
In comparing a computer to the mind, the computer is

261

vastly better at math, but the mind is better at dealing
with faces and voices, and can contemplate the entirety
of some entity that it has previously experienced.
Science fiction books and movies are full of machines
that read minds or implant ideas into them, space ships
with built-in talking computers and lifelike robots and
androids. These machines have varying capabilities and
some of the plots deal with the robot wrestling with
consciousness, self-realization, emotions, etc. These
machines seem to feel less than complete because they
are just machines, and want desperately to become fully
human. It’s sort of a grown-up version of the children’s
classic “Pinocchio,” the story about a marionette who
wants to become a real boy.
But would it be possible to build such machines with a
vastly expanded version of the technology that we used
to build our simple computer?
Optimism is a great thing, and it should not be
squashed, but a problem will not be susceptible to
solution if you are using a methodology or technology
that doesn’t measure up to that problem. In the field of
medicine, some diseases have been wiped out by
antibiotics, others can be prevented by inoculations,
but others still plague humanity despite the best of
care and decades of research. And let’s not even look
into subjects like politics. Maybe more time is all
that’s needed, but you also have to look at the
possibility that these problems either are unsolvable,
or that the research has been looking in the wrong
places for the answer.
As an example, many visions of the future have included
people traveling around in flying cars. Actually,
several types of flying cars have been built. But they
are expensive, inefficient, noisy and very dangerous.
They work on the same basic principles as helicopters.
If two flying cars have any sort of a minor accident,
everyone will die when both cars crash to the Earth. So
today’s aviation technology just won’t result in a
satisfactory flying car. Unless and until someone
invents a cheap and reliable anti-gravity device, there
will not be a mass market for flying cars and traffic on
the roads will not be relieved.

262

If you want to build a machine that works just like a
person, certainly the best way to do it would be to find
out how the person works and then build a machine that
works on the same principles, has parts that do the same
things, and is wired up in the same way as a person.
When Thomas Edison invented the phonograph, he was
dealing with the subject of sound. Sound is a vibration
of the air. So he invented an apparatus that captured
the vibrations in the air and transformed them into a
vibrating groove on the surface of a wax cylinder. The
sound could then be recreated by transferring the
vibrations in the groove back into the air. The point
is, that in order to recreate sound, he found out how
sound worked, and then made a machine that worked on the
same principle. Sound is a vibration, the groove in a
phonograph is a vibration.
A lot of research has been done on the subject of what
makes people tick. A lot of research has been done on
the subject of how to make computers do the things that
people do. A lot of things have been discovered and a
lot of things have been invented. I do not want to
minimize any of the work done, or results achieved in
these areas.
But there are many things that have not yet been
discovered or invented.
Many dead brains have been dissected and their parts
have been studied and classified. The brain does contain
nerve cells which move electricity from one place to
another. This is a similarity between brains and
computers. But research into the actual operation of
living human brains is necessarily limited. Most
observations have been made during surgeries that were
necessitated by accident or disease. Many observations
have been made of changes to behavior after an injury or
disease has disabled certain parts of the brain. From
this research, it has been possible to associate certain
functions with certain areas of the brain.
But no one has discovered a bus, a clock, any registers,
an ALU or RAM. The exact mechanism of memory in the
brain remains a mystery. It has been shown that nerves
grow new connections over time, and it is assumed that
this is the mechanism of learning, but no one has been

263

able to say that this particular nerve does this exact
function, as we can do with the individual wires in a
computer.
Everything that goes into a computer gets turned into
one code or another. The keyboard generates one byte of
ASCII per keystroke, a microphone generates 44,100
binary numbers per second, a color camera generates
three binary numbers per pixel, 30 times a second, and
so on. No one has isolated the use of any codes like
ASCII, binary numbers, fonts or an instruction code in
the brain. They may be there, but they have not been
isolated. No one has traced a thought or located a
memory in the same way that we could follow the
operation of a program in a computer.
It is widely assumed that the brain works in some much
more spread out way than a single computer, that there
are thousands or billions of computer elements that
cooperate and share the work. But such elements have not
yet been located. In the world of computing, this idea
is called ‘parallel processing’ and computers with
dozens or hundreds of CPUs have been built. But these
computers still haven’t resulted in a human substitute.
Think of it all as a puzzle. How people work is one side
of the puzzle. Making computers do things that people do
is the other side of the puzzle. Pieces of the puzzle
are being assembled on both sides. The problem is that
as progress is being made on both sides, it looks more
and more like these are two different puzzles, they are
not coming together in the middle. They are not
converging into a single picture.
The researchers are very aware of these developments.
But when it comes to pop culture, people hear about new
inventions all the time, and see the future portrayed in
science fiction films, and the logical conclusion seems
to be that research will continue to solve the problems
one by one until in 10 or 20 or 30 years we will have
our electro-mechanical friends. In the past century we
conquered electricity, flight, space travel, chemistry,
nuclear energy, etc. So why not the brain and/or mind?
The research, however, is still at the stage where every
time one new answer is found, it creates more than one
more new question.

264

So it appears that whichever way we look at it, neither
the brain nor the mind work on the same principles as
computers as we know them. I say ‘as we know them’
because some other type of computer may be invented in
the future. But all of the computers we have today come
under the definition of ‘Stored Program Digital
Computers,’ and all of the principles on which they
operate have been presented in this book.
Still, none of this ‘proves’ that a synthetic human
could never be built, it only means that the computer
principles as presented in this book are not sufficient
for the job. Some completely different type of device
that operates on some completely different set of
principles might be able to do it. But we can’t comment
on such a device until someone invents one.
Going back to a simpler question, do you remember Joe
and the Thermos bottle? He thought that the Thermos had
some kind of a temperature sensor, and a heater and
cooler inside. But even if it had had all of that
machinery in it, it still wouldn’t “know” what to do, it
would just be a mechanical device that turned on the
heater or cooler depending on the temperature of the
beverage placed in it.
A pair of scissors is a device that performs a function
when made to do so. You put a finger and thumb in the
holes and squeeze. The blades at the other end of the
scissors move together and cut some paper or cloth or
whatever it is that you have placed in their way. Do the
scissors “know” how to cut shapes out of paper or how to
make a dress out of cloth? Of course not, they just do
what they’re told.
Similarly, NAND gates don’t “know” what they are doing,
they just react to the electricity or lack of it placed
on their inputs. If one gate doesn’t know anything, then
it doesn’t matter how many of them you connect together,
if one of them knows absolutely zero, a million of them
will also know zero.
We use a lot of words that give human characteristics to
our computers. We say that it “knows” things. We say it
“remembers” things. We say that it “sees,” and
“understands.” Even something as simple as a device
adapter “listens” for its address to appear on the I/O

265

bus, or a jump instruction “decides” what to do. There
is nothing wrong with this as long as we know the truth
of the matter.
Now that we know what is in a computer, and how it
works, I think it is fairly obvious that the answer to
the question “But How do it Know?” is simply “It doesn’t
know anything!”

266

	Table of Contents
	Introduction
	Just the Facts Ma’am
	Speed
	Language
	Just a Little Bit
	What the…?
	Simple Variations
	Diagrams
	Remember When
	What Can We Do With A Bit?
	A Rose by Any Other Name
	Eight Is Enough
	Codes
	Back to the Byte
	The Magic Bus
	More Gate Combinations
	First Half of the Computer
	Numbers
	Addresses
	The Other Half of the Computer
	More Gates
	Messing with Bytes
	The Left and Right Shifters
	The NOTter
	The ANDer
	The ORer
	The Exclusive ORer
	The Adder
	The Comparator and Zero
	Logic
	The Arithmetic and Logic Unit
	More of the Processor
	The Clock
	Doing Something Useful
	Step by Step
	Everything’s Under Control
	Doing Something Useful, Revisited
	What’s Next?
	The First Great Invention
	Instructions
	The Arithmetic or Logic Instruction
	The Load and Store Instructions
	The Data Instruction
	The Second Great Invention
	Another Way to Jump
	The Third Great Invention
	The Clear Flags Instruction
	Ta Daa!
	A Few More Words on Arithmetic
	The Outside World
	The Keyboard
	The Display Screen
	Another Code
	The Final Word on Codes
	The Disk
	Excuse Me Ma’am
	That’s All Folks
	Hardware and Software
	Programs
	The Operating System
	Languages
	The File System
	Errors
	Computer Diseases?
	Firmware
	Boots
	Digital vs. Analog
	I Lied – Sort of
	Full Disclosure
	Philosophy

